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MotivationMotivation

•• Conventional automated layout synthesis method: Conventional automated layout synthesis method: 
–– Describe design at RTL or higher levelDescribe design at RTL or higher level
–– Generate technologyGenerate technology--independent realizationindependent realization
–– Map logicMap logic--level circuit to technology librarylevel circuit to technology library

•• Optimization goal: shifting from lowOptimization goal: shifting from low--area to lowarea to low--power power 
and higher performanceand higher performance

•• Need accurate signal probability/activity estimatesNeed accurate signal probability/activity estimates
•• Consider lowConsider low--power needs at all design levelspower needs at all design levels



BehavioralBehavioral--Level TransformationsLevel Transformations



AlgorithmAlgorithm--Level Power Level Power 
Reductions vs. Other LevelsReductions vs. Other Levels



Logic/Circuit Synthesis for LowLogic/Circuit Synthesis for Low--
PowerPower



LogicLogic--Level OptimizationsLevel Optimizations



Design FlowDesign Flow

•• Behavioral Synthesis Behavioral Synthesis –– not used very muchnot used very much
•• Initial design description: RTL or Logic levelInitial design description: RTL or Logic level
•• Logic synthesis widely usedLogic synthesis widely used
•• FSMs:FSMs:

–– State Assignment State Assignment –– opportunity for power savingopportunity for power saving
–– Logic Synthesis Logic Synthesis –– look for common subfunctions look for common subfunctions –– opportunity opportunity 

for power savingfor power saving
•• Custom VLSI design Custom VLSI design –– size transistors to optimize for power, area, and size transistors to optimize for power, area, and 

delaydelay
•• LibraryLibrary--based design based design –– technology mapping used to map design into technology mapping used to map design into 

library elementslibrary elements



FSM and Combinational Logic FSM and Combinational Logic 
SynthesisSynthesis

•• Consider likelihood of state transitions during state Consider likelihood of state transitions during state 
assignmentassignment
–– Minimize # signal transitions on present state inputs Minimize # signal transitions on present state inputs VV

•• Consider signal activity when selecting best common Consider signal activity when selecting best common 
subsub--expression to pull out during multiexpression to pull out during multi--level logic level logic 
synthesissynthesis
–– Factor highestFactor highest--activity common subactivity common sub--expression out of expression out of 

all affected expressions all affected expressions 



Huffman FSM RepresentationHuffman FSM Representation





















































Introduction to our techniqueIntroduction to our technique

•• TerminologyTerminology
–– LiteralLiteral: A variable or a constant eg. a,b,2,3.14: A variable or a constant eg. a,b,2,3.14
–– CubeCube: Product of literals e.g. +3a: Product of literals e.g. +3a22b, b, --2a2a33bb22cc
–– SOPSOP: Sum of cubes e.g. +3a: Sum of cubes e.g. +3a22b b –– 2a2a33bb22cc
–– CubeCube--free expressionfree expression: No literal or cube can divide all : No literal or cube can divide all 

the cubes of the expressionthe cubes of the expression
–– KernelKernel: A cube free sub: A cube free sub--expression of an expression, expression of an expression, 

e.g. 3 e.g. 3 –– 2abc2abc
–– CoCo--KernelKernel: A cube that is used to divide an expression : A cube that is used to divide an expression 

to get a kernel, e.g. ato get a kernel, e.g. a22bb
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Kernels and Kernel Kernels and Kernel 
IntersectionsIntersections

DEFINITION: DEFINITION: 
An expression is An expression is cubecube--freefree if no cube divides the expression evenly (i.e. there is no if no cube divides the expression evenly (i.e. there is no 
literal that is common to all the cubes).literal that is common to all the cubes).

ab + c  is cubeab + c  is cube--freefree
ab + ac and abc are not cubeab + ac and abc are not cube--freefree

NoteNote:  a cube:  a cube--free expressionfree expression mustmust have more than one cube.have more than one cube.

DEFINITION:DEFINITION:
The The primary divisorsprimary divisors of an expression F are the set of expressionsof an expression F are the set of expressions

D(F) = {F/c | c is a cube}.D(F) = {F/c | c is a cube}.
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Kernels and Kernel Kernels and Kernel 
IntersectionsIntersections

DEFINITION:DEFINITION:
The The kernelskernels of an expression F are the set of expressionsof an expression F are the set of expressions
K(F) = {G | G K(F) = {G | G  D(F) and G is cubeD(F) and G is cube--free}.free}.

In other words, the kernels of an expression F are the In other words, the kernels of an expression F are the cubecube--free primary divisorsfree primary divisors of F.of F.

DEFINITION:DEFINITION:
A cube c used to obtain the kernel K = F/c is called a A cube c used to obtain the kernel K = F/c is called a coco--kernelkernel of K. of K. 

C(F) is used to denote the C(F) is used to denote the set of coset of co--kernelskernels of F.of F.
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ExampleExample

Example:Example:
x = adf + aef + bdf + bef + cdf + cef + gx = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g= (a + b + c)(d + e)f + g

kernelskernels coco--kernelskernels

a+b+ca+b+c df, efdf, ef
d+ed+e af,  bf, cfaf,  bf, cf
(a+b+c)(d+e)f+g(a+b+c)(d+e)f+g 11



Kernels: Kernels: ExampleExample

F = F = adfadf + + aefaef + + bdfbdf + + befbef + + cdfcdf + + cefcef + + bfgbfg + h+ h
= (= (a+b+ca+b+c)()(d+ed+e)f + )f + bfgbfg + h+ h

cubecube Prim. Div.Prim. Div. KernelKernel CoCo--kernelkernel levellevel
aa df+efdf+ef NONO NONO ----
bb df+ef+fgdf+ef+fg NONO NONO ----
bfbf d+e+gd+e+g YESYES YESYES 00
cfcf d+ed+e YESYES YESYES 00
dfdf a+b+ca+b+c YESYES YESYES 00
fgfg bb NONO NONO ----
ff (a+b+c)(d+e)+bg(a+b+c)(d+e)+bg YESYES YESYES 11
11 FF YESYES YESYES 22
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Kerneling IllustratedKerneling Illustrated

abcd + abce + adfg + aefg + adbe + acdef + beg
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coco--kernelskernels kernelskernels

11 aa((((bcbc + + fgfg)(d + e) + de(b + )(d + e) + de(b + cfcf))) + beg))) + beg
aa ((bcbc + + fgfg)(d + e) + de(b + )(d + e) + de(b + cfcf))
abab c(c(d+ed+e) + de) + de
abcabc d d + e+ e
abdabd c c + e+ e
abeabe c c + d+ d
acac b(d b(d + e) + def+ e) + def
acdacd b + b + efef

NoteNote:: f/f/bcbc = ad + = ad + aeae = a(d + e)= a(d + e)

Kerneling IllustratedKerneling Illustrated











Probabilistic State Transition Probabilistic State Transition 
Graphs (STGs)Graphs (STGs)

•• Edges showing state transitions not only indicate input values Edges showing state transitions not only indicate input values 
causing transitions and resulting outputscausing transitions and resulting outputs

•• Also have labels Also have labels ppijij giving conditional probability of transition giving conditional probability of transition 
from state from state SSii to to SSjj
–– Given that machine is in state Given that machine is in state SSii
–– Directly related to signal probabilities at primary inputsDirectly related to signal probabilities at primary inputs
––

•• Introduce selfIntroduce self--loops in STG for don’t care situations to loops in STG for don’t care situations to 
transform incompletelytransform incompletely--specified machine into completelyspecified machine into completely--
specified machinespecified machine



ExampleExample



Relationship Between State Relationship Between State 
Assignment and PowerAssignment and Power

•• Hamming distance between states Hamming distance between states SSii and and SSjj::
–– H (SH (Sii, S, Sjj) = # bits in which the assignments differ) = # bits in which the assignments differ

•• Average Power:Average Power:
–– D (i) = signal activity at node iD (i) = signal activity at node i
–– Approximate Approximate CCii with fanout factor at node with fanout factor at node ii

•• Average power proportional to:Average power proportional to:



Handling Present State InputsHandling Present State Inputs
•• Find state transitions Find state transitions (Si, Sj)(Si, Sj) of highest probabilityof highest probability
•• Minimize Minimize H (Si, Sj)H (Si, Sj) by changing state assignment of by changing state assignment of SiSi, , 

SjSj
•• Requires system simulation of circuit over many clock Requires system simulation of circuit over many clock 

periods, noting signal values and transitionsperiods, noting signal values and transitions
•• If oneIf one--hot design is used, note that hot design is used, note that H = 2H = 2 for all statesfor all states

–– Impossible to obtain optimum power reductionImpossible to obtain optimum power reduction
–– Uses too many flipUses too many flip--flopsflops

•• Optimization cost function:Optimization cost function:



Simulated Annealing Optimization Simulated Annealing Optimization 
AlgorithmAlgorithm

•• Allowed moves:Allowed moves:
–– Interchange codes of two statesInterchange codes of two states
–– Assign an unassigned code to a state that is randomly Assign an unassigned code to a state that is randomly 

picked for an exchangepicked for an exchange
•• Accept move if it decreases Accept move if it decreases gg
•• If move increases If move increases gg, accept with probability:, accept with probability:

e e -- ||dd ((gg) | / Temp) | / Temp



Example State MachineExample State Machine



State AssignmentsState Assignments

•• Coding 1 uses 15% more power than coding 2Coding 1 uses 15% more power than coding 2



MultiMulti--Level Logic Optimization Level Logic Optimization 
for Low Powerfor Low Power

•• Combinational logic is Combinational logic is F (I, V)F (I, V)
–– I = set of primary inputsI = set of primary inputs
–– V = present state inputsV = present state inputs

•• Need to estimate probabilities and activities of Need to estimate probabilities and activities of VV inputs (same inputs (same 
as next state outputs but delayed one clock period) in order to as next state outputs but delayed one clock period) in order to 
synthesize logic for minimum powersynthesize logic for minimum power
–– Use methods of Chapter 3Use methods of Chapter 3

•• Randomly generate PI signals with probabilities and activities Randomly generate PI signals with probabilities and activities 
conforming to a given distributionconforming to a given distribution
–– Get Get D (vD (vjj) = transition activity at input v) = transition activity at input vj j (transitions / clock (transitions / clock 

period)period)
–– Get from fast state transition diagram simulationGet from fast state transition diagram simulation



PowerPower--Driven MultiDriven Multi--Level Logic Level Logic 
OptimizationOptimization

•• Use Berkeley MIS toolUse Berkeley MIS tool
–– Takes set of Boolean functions as inputTakes set of Boolean functions as input
–– Procedure kernel finds all cubeProcedure kernel finds all cube--free multiple or singlefree multiple or single--cube cube 

divisors of each Boolean functiondivisors of each Boolean function
–– Retains all common divisorsRetains all common divisors
–– Factors out best few common divisorsFactors out best few common divisors
–– Substitution procedure simplifies original functions to use Substitution procedure simplifies original functions to use 

factoredfactored--out divisorout divisor
•• Original criteria for selecting common divisor:Original criteria for selecting common divisor:

–– Chip area savingChip area saving
•• New criterion: power savingNew criterion: power saving



Boolean Expression FactoringBoolean Expression Factoring
•• g = g (ug = g (u11, u, u22, …, u, …, uKK), K    1), K    1 is common subis common sub--expressionexpression
•• When When gg factored out of factored out of LL functions, signal probabilities and functions, signal probabilities and 

activities at all circuit nodes are unchangedactivities at all circuit nodes are unchanged
•• Capacitances at output of driver gates Capacitances at output of driver gates uu11, u, u22, …, u, …, uKK changechange
•• Each drives Each drives LL--11 fewer gates than beforefewer gates than before
•• Reduced power:Reduced power:

•• D (x) = activity at node xD (x) = activity at node x
•• nnukuk = # gates belonging to node g and driven by u= # gates belonging to node g and driven by uKK





Factoring (continued)Factoring (continued)

•• Only one copy now of Only one copy now of gg instead of instead of L L copiescopies
–– LL--11 fewer copies of internal nodes fewer copies of internal nodes vv11, v, v22, …, v, …, vmm in in 

factoredfactored--out hardware for switching and dissipating out hardware for switching and dissipating 
powerpower

•• Power saving:Power saving:

•• Total power saving:Total power saving:



Factoring (concluded)Factoring (concluded)

•• T (g) = # literals in factored form of gT (g) = # literals in factored form of g
•• Area saving:Area saving:
•• Net saving of power and area:Net saving of power and area:
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Optimization Cost CriteriaOptimization Cost Criteria
The accepted optimization criteria for multiThe accepted optimization criteria for multi--level logic are to level logic are to minimizeminimize

some function of:some function of:

1.1. Area Area occupied by the logic gates and interconnectoccupied by the logic gates and interconnect
(approximated by (approximated by literals = transistorsliterals = transistors in technology in technology 
independent optimization)independent optimization)

2.2. Critical path delay Critical path delay of the longest path through the logicof the longest path through the logic
3.3. Degree of testabilityDegree of testability of the circuit, measured in terms of the of the circuit, measured in terms of the 

percentagepercentage of faults covered by a specified set of test vectors of faults covered by a specified set of test vectors 
for an approximate fault model (e.g. single  or multiple stuckfor an approximate fault model (e.g. single  or multiple stuck--
at faults)at faults)

4.4. PowerPower consumed by the logic gatesconsumed by the logic gates
5.5. Noise ImmunityNoise Immunity
6.6. WireabilityWireability

while simultaneously satisfying upper or lower bound constraints placed on while simultaneously satisfying upper or lower bound constraints placed on 
these physical quantitiesthese physical quantities

















1) Kernel Extraction : Consider the Boolean Function
F = uvy + vwy + xy + uz + vz.

• Identify all co-kernel/kernel paris of F. State their levels.

2) Weak Algebraic Division (10 points): 
We have studied an algorithm to perform weak algebraic
division in class that can be used to decompose a function F, algebraically,as
Fdividend = Gdivisor ·Hquotient+Rremainder. Divide F = ab+ac+ad′+bc+bd′ by 
the following:
• G = a + b. What is the quotient and the remainder?
• G = c+d′. What is the quotient and the remainder?



Optimization AlgorithmOptimization Algorithm



Optimization Algorithm Optimization Algorithm 
(concluded)(concluded)







Example Unoptimized CircuitExample Unoptimized Circuit



Optimization for Area AloneOptimization for Area Alone



Optimization for LowOptimization for Low--Power AlonePower Alone
•• Large area but reduces power from 476.12 to 423.12Large area but reduces power from 476.12 to 423.12



Example Signal ProbabilitiesExample Signal Probabilities



Propagating Combinational Propagating Combinational 
Signal ActivitiesSignal Activities











ResultsResults

•• On the MCNC Benchmarks:On the MCNC Benchmarks:
•• TwoTwo--stage processstage process

–– State assignment problemState assignment problem
–– MultiMulti--level combinational logic synthesis based on level combinational logic synthesis based on 

power dissipation and area reductionpower dissipation and area reduction
•• Result:Result:

–– 25% reduction in power25% reduction in power
–– 5% increase in area5% increase in area



Technology Mapping for Low Technology Mapping for Low 
PowerPower

•• Problem statement:Problem statement:
–– Given Boolean network optimized in a technologyGiven Boolean network optimized in a technology--independent independent 

way and a target library, bind network nodes to library gates to way and a target library, bind network nodes to library gates to 
optimize a given costoptimize a given cost

•• Method:Method:
–– Decompose circuit into treesDecompose circuit into trees
–– Use dynamic programming to cover treesUse dynamic programming to cover trees
–– Cost function:Cost function:

–– Traverse tree once from leaves to rootTraverse tree once from leaves to root



Extension for LowExtension for Low--Power DesignPower Design
•• Power dissipation estimate:Power dissipation estimate:

•• Estimate partial power consumption of intermediate solutionsEstimate partial power consumption of intermediate solutions
•• Cost function:Cost function:

•• MinPower (nMinPower (nii)) is minimum power cost for input pin is minimum power cost for input pin nnii of of gg
•• power (g) = 0.5 f Vpower (g) = 0.5 f VDDDD

22 aaii CCii
•• Formulation:Formulation:

–– R = Total AreaR = Total Area, , ww gives their relative importancegives their relative importance
–– f = frequency, T = circuit delayf = frequency, T = circuit delay



TopTop--Level Mapping AlgorithmLevel Mapping Algorithm

•• Overall process:Overall process:
–– From tree leaves to root, compute tradeFrom tree leaves to root, compute trade--off curves for off curves for 

matching gates from librarymatching gates from library
–– From root to leaves:From root to leaves:

•• Select minimumSelect minimum--cost solutioncost solution

•• Reduces average power by 22% while keeping the Reduces average power by 22% while keeping the 
same delaysame delay
–– Sometimes increases area as much as 39%Sometimes increases area as much as 39%



CircuitCircuit--Level OptimizationsLevel Optimizations



Algorithm ComponentsAlgorithm Components

1.1. Find which gate to examine nextFind which gate to examine next
2.2. Use a set of transformations for the gateUse a set of transformations for the gate
3.3. Compute overall power improvement due to Compute overall power improvement due to 

transformationstransformations
4.4. Update the circuit after each transformationUpdate the circuit after each transformation



Gate Delay ModelGate Delay Model
•• For every input terminal For every input terminal IIii and output terminal and output terminal OOjj of of 

every gate:every gate:
–– T T iii,ji,j (G)(G) –– fanout load independent delay (intrinsic)fanout load independent delay (intrinsic)
–– RRi,ji,j (G)(G) –– additional delay per unit fanout loadadditional delay per unit fanout load

•• Total gate propagation delay from input to output:Total gate propagation delay from input to output:

–– Normalize all activities Normalize all activities ddyy by dividing them by clock by dividing them by clock 
activity (activity (2f2f))

•• Probability of rising or falling transition at Probability of rising or falling transition at yy::



CMOS Gate UsageCMOS Gate Usage

•• Deep subDeep sub--micron technology:micron technology:
•• Delay of NAND/NOR to INVERTER delay lessens in Delay of NAND/NOR to INVERTER delay lessens in 

deep subdeep sub--micron technologymicron technology
–– Series transistor connection Series transistor connection VVdsds and and VVgsgs smaller than smaller than 

that for inverter transistorthat for inverter transistor
•• Encourages wider use of complex CMOS gatesEncourages wider use of complex CMOS gates
•• Important to order series transistors correctlyImportant to order series transistors correctly

–– Delay varies by 20%Delay varies by 20%
–– Power varies by 10%Power varies by 10%



CMOS Gate Power ConsumptionCMOS Gate Power Consumption
•• For seriesFor series--connected connected 

transistors, signal with transistors, signal with 
lower activity should be lower activity should be 
on transistor closest to on transistor closest to 
power supply railpower supply rail



Calculating Transition ProbabilityCalculating Transition Probability

•• Hard to find Hard to find ppzizi
–– Hard to determine prior state of internal circuit nodesHard to determine prior state of internal circuit nodes
–– Assume that when state cannot be determined, a transition Assume that when state cannot be determined, a transition 

occurred (upper power limit)occurred (upper power limit)
–– More accurate bound: Observe that # conducting paths from More accurate bound: Observe that # conducting paths from 

node to node to VVdddd must change from 0 to > 0 followed by similar change must change from 0 to > 0 followed by similar change 
in # conducting paths to in # conducting paths to VVssss

•• Use # conducting paths that is smallerUse # conducting paths that is smaller
••

–– Use serialUse serial--parallel graph edge reduction techniquesparallel graph edge reduction techniques



Transistor ReorderingTransistor Reordering

•• Already know delay of longest paths through each gate Already know delay of longest paths through each gate 
input from static timing analyzerinput from static timing analyzer

•• Should (for NAND or NOR) connect latest arriving Should (for NAND or NOR) connect latest arriving 
signal to input with smallest delaysignal to input with smallest delay
–– Break gate inputs into permutable sets and swap inputsBreak gate inputs into permutable sets and swap inputs
–– Hard to compute which input order is best Hard to compute which input order is best –– can afford can afford 

to enumerate all possible orderings and try themto enumerate all possible orderings and try them
•• Compute prob. (signal is switching while all other signals in Compute prob. (signal is switching while all other signals in 

permutable set are on) permutable set are on) –– gives maximum internal node gives maximum internal node CC
charging charging // dischargingdischarging





Optimization AlgorithmOptimization Algorithm
•• Try to meet circuit performance goal (do forwards and then Try to meet circuit performance goal (do forwards and then 

backwards graph traversal)backwards graph traversal)
•• During backwards traversal:During backwards traversal:

–– If a gate delay is larger than specified delay, reorder inputs to If a gate delay is larger than specified delay, reorder inputs to 
decrease delaydecrease delay

–– End up with valid backwards delays for gates, but not valid End up with valid backwards delays for gates, but not valid 
forward delaysforward delays

•• Repeat forward traversal if input reordering was doneRepeat forward traversal if input reordering was done
–– Continue reordering inputs if gate path delay specification is Continue reordering inputs if gate path delay specification is 

exceededexceeded
•• Continue alternating forward/backwards traversals until no Continue alternating forward/backwards traversals until no 

more reorderings happen, then proceed to power minimizationmore reorderings happen, then proceed to power minimization



Power MinimizationPower Minimization

•• Repeat alternating forward and backward traversalsRepeat alternating forward and backward traversals
•• Change: Determine delay increase for input order Change: Determine delay increase for input order 

corresponding to least estimated power dissipationcorresponding to least estimated power dissipation
–– If increase less than available path slack, reorder inputsIf increase less than available path slack, reorder inputs

•• Available slack: difference between:Available slack: difference between:
1.1. Larger of maximum acceptable delay and longest path delayLarger of maximum acceptable delay and longest path delay
2.2. Delay of longest path through gateDelay of longest path through gate

–– Results on MCNC benchmarks Results on MCNC benchmarks –– reduced power by 7 to 8 %, reduced power by 7 to 8 %, 
with no critical path delay increase, and very little area with no critical path delay increase, and very little area 
penaltypenalty



Zero Slack AlgorithmZero Slack Algorithm

•• Arrival time in forward directionArrival time in forward direction from primary input to primary output.from primary input to primary output.
•• Choose Maximum arrival timeChoose Maximum arrival time so that all the inputs are reaching the gate. So the so that all the inputs are reaching the gate. So the 

gate generate output.gate generate output.
•• Required time in backward directionRequired time in backward direction from primary output to primary input.from primary output to primary input.
•• Choose Minimum required timeChoose Minimum required time –– how fast the output from gate reach the  input how fast the output from gate reach the  input 

of next gate. So that signal is propagated to next level.of next gate. So that signal is propagated to next level.
•• Slack= Difference between Maximum arrival timeSlack= Difference between Maximum arrival time-- Minimum required timeMinimum required time



Zero Slack AlgorithmSlack Algorithm
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Zero Slack AlgorithmSlack Algorithm
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Transistor ReorderingTransistor Reordering

 Logically equivalent CMOS gates may not have 
identical energy/delay characteristics

( 1 2)y a a b 

b

b

a1

a1 a2

a2

y

b

b

a2

a1 a2

a1
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b
a1

a1 a2

a2
y

b

b
a2

a1 a2

a1

y

b

A B C D
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Transistor Reordering cont’dTransistor Reordering cont’d
Normalized Pdyn

Activity (transitions / s) (A) (B) (C) (D) max. savings

Aa1 = 10 K 

(1) Aa2 = 100 K 0.81 0.84 0.98 1.0 19%  

Ab = 1 M

Aa1 = 1 M

(2) Aa2 = 100 K 0.58 0.53 0.53 0.48 10% 

Ab   = 10 K

 For given logic function and activity: 
Signal with highest activity → closest to output
to reduce charging/discharging internal nodes
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Example: Static 2 Input NOR Gate 

PA=1 = 1/2 
PB=1 = 1/2

POut=0 = 3/4
POut=1 = 1/4

P0→1 = POut=0 * POut=1

= 3/4 * 1/4 = 3/16

Then:

Transition Probabilities for CMOS GatesTransition Probabilities for CMOS Gates

A B Out

1 1 0

0 1 0

1 0 0

0 0 1

Truth table of NOR2 gate

If A and B with same input signal probability: 

Ceff = P0→1 * CL =  3/16 * CL



P01 = Pout=0  *  Pout=1

NOR (1 - (1 - PA)(1 - PB)) * (1 - PA)(1 - PB)

OR (1 - PA)(1 - PB) * (1 - (1 - PA)(1 - PB))

NAND PAPB * (1 - PAPB)
AND (1 - PAPB) * PAPB

XOR (1 - (PA + PB- 2PAPB)) * (PA + PB- 2PAPB)

Transition Probabilities cont’dTransition Probabilities cont’d
 A and B with different input signal probability: 
 PA and  PB :  Probability that input is 1
 P1 :  Probability that output is 1

 Switching activity in CMOS circuits: P01 = P0 * P1

 For 2-Input NOR: P1 = (1-PA)(1-PB)
 Thus: P01 = (1-P1)*P1 = [1-(1-PA)(1-PB)]*[(1-PA)][1-PB]



Logic RestructuringLogic Restructuring

Chain implementation has a lower overall  switching activity than  tree Chain implementation has a lower overall  switching activity than  tree 
implementation for random inputs implementation for random inputs 

 BUT:BUT: Ignores Ignores glitchingglitching effectseffects

 Logic restructuring: changing the topology of a logic 
network to reduce transitions

A
B

C
D F

A
B

C
D Z

F
W

X

Y0.5

0.5

(1-0.25)*0.25 = 3/16

0.5
0.5

0.5

0.5
0.5

0.5

7/64 = 0.109

15/256

3/16

3/16 = 0.188

15/256

AND:  P01 = P0  *  P1 = (1 - PAPB) * PAPB

Source: Timmernann, 2007



Input OrderingInput Ordering

Beneficial: postponing introduction of signals with a Beneficial: postponing introduction of signals with a highhigh
transition rate (signals with signal probability close to 0.5)transition rate (signals with signal probability close to 0.5)

A
B

C

X

F

0.5

0.2
0.1

B
C

A

X

F

0.2

0.1
0.5

(1-0.5x0.2)*(0.5x0.2)=0.09
(1-0.2x0.1)*(0.2x0.1)=0.0196

AND:  P01 = (1 - PAPB) * PAPB



Transistor Resizing MethodsTransistor Resizing Methods

•• Datta, Nag & Roy: resized transistors on critical paths to Datta, Nag & Roy: resized transistors on critical paths to 
reduce power and shorten delayreduce power and shorten delay

•• Wider transistors speed up critical path and reduce power Wider transistors speed up critical path and reduce power 
because you get sharper edges, and therefore less shortbecause you get sharper edges, and therefore less short--circuit circuit 
power dissipationpower dissipation
–– Penalty Penalty –– larger transistors increase node larger transistors increase node CC, which can increase , which can increase 

delay and powerdelay and power
–– Increased drive for present block, and greater transition time for Increased drive for present block, and greater transition time for 

preceding block (due to larger load preceding block (due to larger load CCLL) may increase present ) may increase present 
block shortblock short--circuit currentcircuit current

–– Simulated annealing algorithm tries to optimize gates on Simulated annealing algorithm tries to optimize gates on NN most most 
critical pathscritical paths



Micro transductors ‘08, Micro transductors ‘08, 
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Transistor Sizing for Power MinimizationTransistor Sizing for Power Minimization

•• Larger sized devices: only useful only when interconnects dominateLarger sized devices: only useful only when interconnects dominate
•• Minimum sized devices:  usually optimal for lowMinimum sized devices:  usually optimal for low--powerpower

Small W’s

Large W’s

Higher Voltage

Lower Voltage

Lower Capacitance

Higher Capacitance

Source: Timmernann, 2007

To keep 
performance



Transistor SizingTransistor Sizing
•• Optimum transistor sizingOptimum transistor sizing

• The first stage is driving the gate capacitance of the second and 
the parasitic capacitance
• input gate capacitance of both stages is given by NCref, where 
Cref represents the gate capacitance of a MOS device with the 
smallest allowable (W/L)



Transistor SizingTransistor Sizing
•• When there is no parasitic capacitance contribution (i.e., When there is no parasitic capacitance contribution (i.e., αα = 0), the = 0), the 

energy increases linearly with respect to N and the solution of utilizing energy increases linearly with respect to N and the solution of utilizing 
devices with the smallest (W/L)devices with the smallest (W/L) ratios results in the lowest power.ratios results in the lowest power.

•• At high values of At high values of αα, , when parasitic capacitances begin to dominate over when parasitic capacitances begin to dominate over 
the gate capacitances, the power decreases temporarily with increasing the gate capacitances, the power decreases temporarily with increasing 
device sizes and then starts to increase, resulting in a optimal value for device sizes and then starts to increase, resulting in a optimal value for 
N.N.

•• The initial decrease in supply voltage achieved from the reduction in The initial decrease in supply voltage achieved from the reduction in 
delays more than compensates the increase in capacitance due to delays more than compensates the increase in capacitance due to 
increasing Nincreasing N..

•• after some point the increase in capacitance dominates the achievable after some point the increase in capacitance dominates the achievable 
reduction in voltage, since the incremental speed increase with reduction in voltage, since the incremental speed increase with 
transistor sizing is very smalltransistor sizing is very small

•• Minimum sized devices should be used when the total load capacitance Minimum sized devices should be used when the total load capacitance 
is not dominated by the interconnectis not dominated by the interconnect



SummarySummary
•• LogicLogic--level multilevel multi--level logic optimization is effectivelevel logic optimization is effective

–– State assignmentState assignment
–– Modified MIS algorithm Modified MIS algorithm 

•• LogicLogic--level Technology mappinglevel Technology mapping
–– TreeTree--covering algorithm is effectivecovering algorithm is effective

•• CircuitCircuit--level operations are effectivelevel operations are effective
–– Transistor input reorderingTransistor input reordering
–– Transistor resizingTransistor resizing
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Addition of Binary NumbersAddition of Binary Numbers
Full Adder. The full adder is the fundamental building block
of most arithmetic circuits:

The sum and carry outputs are described as:

iiiiiiiiiiiiiiiiiii cbcabacbacbacbacbac 1

iiiiiiiiiiiii cbacbacbacbas 

Full
Adder

CinCout

si

ai bi
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Addition of Binary NumbersAddition of Binary Numbers

Propagate

Propagate

Generate

Generate

Inputs Outputs

ci ai bi si ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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FullFull--Adder ImplementationAdder Implementation

Full Adder operations is defined by equations:Full Adder operations is defined by equations:
iiiiiiiiiiiiiiiiii cpcbacbacbacbacbas 

iiiiiiiiiiii cpgbacbacbac 1

One-bit adder could be 
implemented as shown

Carry-Propagate:
and Carry-Generate gi

iii bap 

iii bag 
cout cin

si

ai bi
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HighHigh--Speed AdditionSpeed Addition

iii cps 

iiii cpgc 1

One-bit adder could be 
implemented more efficiently
because MUX is faster

iii bap 
iii bag 

0

1s

bi
ai

cout

si

cin



Array Multipliers with Lower Power ConsumptionArray Multipliers with Lower Power Consumption

Fig. 26.5    An array multiplier with gated FA cells.

p0

p1

p2

p3

p4p6p7p8

0 0 0

p9 p5

0 0

0

0

0

0

0

a0a1a2a3a4

x4

x3

x2

x1

x0
Carry

Sum



New and Emerging MethodsNew and Emerging Methods

Local 
Control

Local 
Control

Local 
Control

Arithmetic 
  Circuit

Arithmetic 
  Circuit

Arithmetic 
  Circuit

Data readyData

Release

Part of an asynchronous chain of 
computations.

Dual-rail data encoding with 
transition signaling:

Two wires per signal

Transition on wire 0 (1) indicates 
the arrival of 0 (1)

Dual-rail design does increase 
the wiring density, but it offers 
the advantage of complete 
insensitivity to delays



The Ultimate in LowThe Ultimate in Low--Power DesignPower Design

Some reversible 
logic gates.

A
B
C

P = A
Q = B
R = A B  C

TG

(a) Toffoli gate

A
B
C

FRG

(b) Fredkin gate

A

B

P = A

Q = A  B
FG

(c) Feynman gate

A
B
C

P = A

R = A B  C
PG Q = A  B

(d) Peres gate

P = A

R = A C  A B
Q = A B  A C

B

0

C
1

0

+

A
Cout

s
(sum)

B

A

G

s

Reversible binary full 
adder built 
of 5 Fredkin gates, 
with a single Feynman 
gate used to fan out 
the input B. The label 
“G” denotes “garbage.”
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