
Power OptimizationPower Optimization

RajaramRajaram SivasubramanianSivasubramanian
Associate ProfessorAssociate Professor

ECE DepartmentECE Department
ThiagarajarThiagarajar College of Engineering,MaduraiCollege of Engineering,Madurai--1515

Courtesy : Prof .Bushnell

MotivationMotivation

•• Conventional automated layout synthesis method: Conventional automated layout synthesis method:
–– Describe design at RTL or higher levelDescribe design at RTL or higher level
–– Generate technologyGenerate technology--independent realizationindependent realization
–– Map logicMap logic--level circuit to technology librarylevel circuit to technology library

•• Optimization goal: shifting from lowOptimization goal: shifting from low--area to lowarea to low--power power
and higher performanceand higher performance

•• Need accurate signal probability/activity estimatesNeed accurate signal probability/activity estimates
•• Consider lowConsider low--power needs at all design levelspower needs at all design levels

BehavioralBehavioral--Level TransformationsLevel Transformations

AlgorithmAlgorithm--Level Power Level Power
Reductions vs. Other LevelsReductions vs. Other Levels

Logic/Circuit Synthesis for LowLogic/Circuit Synthesis for Low--
PowerPower

LogicLogic--Level OptimizationsLevel Optimizations

Design FlowDesign Flow

•• Behavioral Synthesis Behavioral Synthesis –– not used very muchnot used very much
•• Initial design description: RTL or Logic levelInitial design description: RTL or Logic level
•• Logic synthesis widely usedLogic synthesis widely used
•• FSMs:FSMs:

–– State Assignment State Assignment –– opportunity for power savingopportunity for power saving
–– Logic Synthesis Logic Synthesis –– look for common subfunctions look for common subfunctions –– opportunity opportunity

for power savingfor power saving
•• Custom VLSI design Custom VLSI design –– size transistors to optimize for power, area, and size transistors to optimize for power, area, and

delaydelay
•• LibraryLibrary--based design based design –– technology mapping used to map design into technology mapping used to map design into

library elementslibrary elements

FSM and Combinational Logic FSM and Combinational Logic
SynthesisSynthesis

•• Consider likelihood of state transitions during state Consider likelihood of state transitions during state
assignmentassignment
–– Minimize # signal transitions on present state inputs Minimize # signal transitions on present state inputs VV

•• Consider signal activity when selecting best common Consider signal activity when selecting best common
subsub--expression to pull out during multiexpression to pull out during multi--level logic level logic
synthesissynthesis
–– Factor highestFactor highest--activity common subactivity common sub--expression out of expression out of

all affected expressions all affected expressions

Huffman FSM RepresentationHuffman FSM Representation

Introduction to our techniqueIntroduction to our technique

•• TerminologyTerminology
–– LiteralLiteral: A variable or a constant eg. a,b,2,3.14: A variable or a constant eg. a,b,2,3.14
–– CubeCube: Product of literals e.g. +3a: Product of literals e.g. +3a22b, b, --2a2a33bb22cc
–– SOPSOP: Sum of cubes e.g. +3a: Sum of cubes e.g. +3a22b b –– 2a2a33bb22cc
–– CubeCube--free expressionfree expression: No literal or cube can divide all : No literal or cube can divide all

the cubes of the expressionthe cubes of the expression
–– KernelKernel: A cube free sub: A cube free sub--expression of an expression, expression of an expression,

e.g. 3 e.g. 3 –– 2abc2abc
–– CoCo--KernelKernel: A cube that is used to divide an expression : A cube that is used to divide an expression

to get a kernel, e.g. ato get a kernel, e.g. a22bb

3737

Kernels and Kernel Kernels and Kernel
IntersectionsIntersections

DEFINITION: DEFINITION:
An expression is An expression is cubecube--freefree if no cube divides the expression evenly (i.e. there is no if no cube divides the expression evenly (i.e. there is no
literal that is common to all the cubes).literal that is common to all the cubes).

ab + c is cubeab + c is cube--freefree
ab + ac and abc are not cubeab + ac and abc are not cube--freefree

NoteNote: a cube: a cube--free expressionfree expression mustmust have more than one cube.have more than one cube.

DEFINITION:DEFINITION:
The The primary divisorsprimary divisors of an expression F are the set of expressionsof an expression F are the set of expressions

D(F) = {F/c | c is a cube}.D(F) = {F/c | c is a cube}.

3838

Kernels and Kernel Kernels and Kernel
IntersectionsIntersections

DEFINITION:DEFINITION:
The The kernelskernels of an expression F are the set of expressionsof an expression F are the set of expressions
K(F) = {G | G K(F) = {G | G  D(F) and G is cubeD(F) and G is cube--free}.free}.

In other words, the kernels of an expression F are the In other words, the kernels of an expression F are the cubecube--free primary divisorsfree primary divisors of F.of F.

DEFINITION:DEFINITION:
A cube c used to obtain the kernel K = F/c is called a A cube c used to obtain the kernel K = F/c is called a coco--kernelkernel of K. of K.

C(F) is used to denote the C(F) is used to denote the set of coset of co--kernelskernels of F.of F.

3939

ExampleExample

Example:Example:
x = adf + aef + bdf + bef + cdf + cef + gx = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g= (a + b + c)(d + e)f + g

kernelskernels coco--kernelskernels

a+b+ca+b+c df, efdf, ef
d+ed+e af, bf, cfaf, bf, cf
(a+b+c)(d+e)f+g(a+b+c)(d+e)f+g 11

Kernels: Kernels: ExampleExample

F = F = adfadf + + aefaef + + bdfbdf + + befbef + + cdfcdf + + cefcef + + bfgbfg + h+ h
= (= (a+b+ca+b+c)()(d+ed+e)f +)f + bfgbfg + h+ h

cubecube Prim. Div.Prim. Div. KernelKernel CoCo--kernelkernel levellevel
aa df+efdf+ef NONO NONO ----
bb df+ef+fgdf+ef+fg NONO NONO ----
bfbf d+e+gd+e+g YESYES YESYES 00
cfcf d+ed+e YESYES YESYES 00
dfdf a+b+ca+b+c YESYES YESYES 00
fgfg bb NONO NONO ----
ff (a+b+c)(d+e)+bg(a+b+c)(d+e)+bg YESYES YESYES 11
11 FF YESYES YESYES 22

4141

Kerneling IllustratedKerneling Illustrated

abcd + abce + adfg + aefg + adbe + acdef + beg

a b

c
(a)

c
d e

(a)

(a) ac+d+g

g

d+ecd+g

f

ce+g

f

b+cf

e

d

b+df

e

b+ef

d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)

4242

coco--kernelskernels kernelskernels

11 aa((((bcbc + + fgfg)(d + e) + de(b +)(d + e) + de(b + cfcf))) + beg))) + beg
aa ((bcbc + + fgfg)(d + e) + de(b +)(d + e) + de(b + cfcf))
abab c(c(d+ed+e) + de) + de
abcabc d d + e+ e
abdabd c c + e+ e
abeabe c c + d+ d
acac b(d b(d + e) + def+ e) + def
acdacd b + b + efef

NoteNote:: f/f/bcbc = ad + = ad + aeae = a(d + e)= a(d + e)

Kerneling IllustratedKerneling Illustrated

Probabilistic State Transition Probabilistic State Transition
Graphs (STGs)Graphs (STGs)

•• Edges showing state transitions not only indicate input values Edges showing state transitions not only indicate input values
causing transitions and resulting outputscausing transitions and resulting outputs

•• Also have labels Also have labels ppijij giving conditional probability of transition giving conditional probability of transition
from state from state SSii to to SSjj
–– Given that machine is in state Given that machine is in state SSii
–– Directly related to signal probabilities at primary inputsDirectly related to signal probabilities at primary inputs
––

•• Introduce selfIntroduce self--loops in STG for don’t care situations to loops in STG for don’t care situations to
transform incompletelytransform incompletely--specified machine into completelyspecified machine into completely--
specified machinespecified machine

ExampleExample

Relationship Between State Relationship Between State
Assignment and PowerAssignment and Power

•• Hamming distance between states Hamming distance between states SSii and and SSjj::
–– H (SH (Sii, S, Sjj) = # bits in which the assignments differ) = # bits in which the assignments differ

•• Average Power:Average Power:
–– D (i) = signal activity at node iD (i) = signal activity at node i
–– Approximate Approximate CCii with fanout factor at node with fanout factor at node ii

•• Average power proportional to:Average power proportional to:

Handling Present State InputsHandling Present State Inputs
•• Find state transitions Find state transitions (Si, Sj)(Si, Sj) of highest probabilityof highest probability
•• Minimize Minimize H (Si, Sj)H (Si, Sj) by changing state assignment of by changing state assignment of SiSi, ,

SjSj
•• Requires system simulation of circuit over many clock Requires system simulation of circuit over many clock

periods, noting signal values and transitionsperiods, noting signal values and transitions
•• If oneIf one--hot design is used, note that hot design is used, note that H = 2H = 2 for all statesfor all states

–– Impossible to obtain optimum power reductionImpossible to obtain optimum power reduction
–– Uses too many flipUses too many flip--flopsflops

•• Optimization cost function:Optimization cost function:

Simulated Annealing Optimization Simulated Annealing Optimization
AlgorithmAlgorithm

•• Allowed moves:Allowed moves:
–– Interchange codes of two statesInterchange codes of two states
–– Assign an unassigned code to a state that is randomly Assign an unassigned code to a state that is randomly

picked for an exchangepicked for an exchange
•• Accept move if it decreases Accept move if it decreases gg
•• If move increases If move increases gg, accept with probability:, accept with probability:

e e -- ||dd ((gg) | / Temp) | / Temp

Example State MachineExample State Machine

State AssignmentsState Assignments

•• Coding 1 uses 15% more power than coding 2Coding 1 uses 15% more power than coding 2

MultiMulti--Level Logic Optimization Level Logic Optimization
for Low Powerfor Low Power

•• Combinational logic is Combinational logic is F (I, V)F (I, V)
–– I = set of primary inputsI = set of primary inputs
–– V = present state inputsV = present state inputs

•• Need to estimate probabilities and activities of Need to estimate probabilities and activities of VV inputs (same inputs (same
as next state outputs but delayed one clock period) in order to as next state outputs but delayed one clock period) in order to
synthesize logic for minimum powersynthesize logic for minimum power
–– Use methods of Chapter 3Use methods of Chapter 3

•• Randomly generate PI signals with probabilities and activities Randomly generate PI signals with probabilities and activities
conforming to a given distributionconforming to a given distribution
–– Get Get D (vD (vjj) = transition activity at input v) = transition activity at input vj j (transitions / clock (transitions / clock

period)period)
–– Get from fast state transition diagram simulationGet from fast state transition diagram simulation

PowerPower--Driven MultiDriven Multi--Level Logic Level Logic
OptimizationOptimization

•• Use Berkeley MIS toolUse Berkeley MIS tool
–– Takes set of Boolean functions as inputTakes set of Boolean functions as input
–– Procedure kernel finds all cubeProcedure kernel finds all cube--free multiple or singlefree multiple or single--cube cube

divisors of each Boolean functiondivisors of each Boolean function
–– Retains all common divisorsRetains all common divisors
–– Factors out best few common divisorsFactors out best few common divisors
–– Substitution procedure simplifies original functions to use Substitution procedure simplifies original functions to use

factoredfactored--out divisorout divisor
•• Original criteria for selecting common divisor:Original criteria for selecting common divisor:

–– Chip area savingChip area saving
•• New criterion: power savingNew criterion: power saving

Boolean Expression FactoringBoolean Expression Factoring
•• g = g (ug = g (u11, u, u22, …, u, …, uKK), K 1), K 1 is common subis common sub--expressionexpression
•• When When gg factored out of factored out of LL functions, signal probabilities and functions, signal probabilities and

activities at all circuit nodes are unchangedactivities at all circuit nodes are unchanged
•• Capacitances at output of driver gates Capacitances at output of driver gates uu11, u, u22, …, u, …, uKK changechange
•• Each drives Each drives LL--11 fewer gates than beforefewer gates than before
•• Reduced power:Reduced power:

•• D (x) = activity at node xD (x) = activity at node x
•• nnukuk = # gates belonging to node g and driven by u= # gates belonging to node g and driven by uKK



Factoring (continued)Factoring (continued)

•• Only one copy now of Only one copy now of gg instead of instead of L L copiescopies
–– LL--11 fewer copies of internal nodes fewer copies of internal nodes vv11, v, v22, …, v, …, vmm in in

factoredfactored--out hardware for switching and dissipating out hardware for switching and dissipating
powerpower

•• Power saving:Power saving:

•• Total power saving:Total power saving:

Factoring (concluded)Factoring (concluded)

•• T (g) = # literals in factored form of gT (g) = # literals in factored form of g
•• Area saving:Area saving:
•• Net saving of power and area:Net saving of power and area:

5959

Optimization Cost CriteriaOptimization Cost Criteria
The accepted optimization criteria for multiThe accepted optimization criteria for multi--level logic are to level logic are to minimizeminimize

some function of:some function of:

1.1. Area Area occupied by the logic gates and interconnectoccupied by the logic gates and interconnect
(approximated by (approximated by literals = transistorsliterals = transistors in technology in technology
independent optimization)independent optimization)

2.2. Critical path delay Critical path delay of the longest path through the logicof the longest path through the logic
3.3. Degree of testabilityDegree of testability of the circuit, measured in terms of the of the circuit, measured in terms of the

percentagepercentage of faults covered by a specified set of test vectors of faults covered by a specified set of test vectors
for an approximate fault model (e.g. single or multiple stuckfor an approximate fault model (e.g. single or multiple stuck--
at faults)at faults)

4.4. PowerPower consumed by the logic gatesconsumed by the logic gates
5.5. Noise ImmunityNoise Immunity
6.6. WireabilityWireability

while simultaneously satisfying upper or lower bound constraints placed on while simultaneously satisfying upper or lower bound constraints placed on
these physical quantitiesthese physical quantities

1) Kernel Extraction : Consider the Boolean Function
F = uvy + vwy + xy + uz + vz.

• Identify all co-kernel/kernel paris of F. State their levels.

2) Weak Algebraic Division (10 points):
We have studied an algorithm to perform weak algebraic
division in class that can be used to decompose a function F, algebraically,as
Fdividend = Gdivisor ·Hquotient+Rremainder. Divide F = ab+ac+ad′+bc+bd′ by
the following:
• G = a + b. What is the quotient and the remainder?
• G = c+d′. What is the quotient and the remainder?

Optimization AlgorithmOptimization Algorithm

Optimization Algorithm Optimization Algorithm
(concluded)(concluded)

Example Unoptimized CircuitExample Unoptimized Circuit

Optimization for Area AloneOptimization for Area Alone

Optimization for LowOptimization for Low--Power AlonePower Alone
•• Large area but reduces power from 476.12 to 423.12Large area but reduces power from 476.12 to 423.12

Example Signal ProbabilitiesExample Signal Probabilities

Propagating Combinational Propagating Combinational
Signal ActivitiesSignal Activities

ResultsResults

•• On the MCNC Benchmarks:On the MCNC Benchmarks:
•• TwoTwo--stage processstage process

–– State assignment problemState assignment problem
–– MultiMulti--level combinational logic synthesis based on level combinational logic synthesis based on

power dissipation and area reductionpower dissipation and area reduction
•• Result:Result:

–– 25% reduction in power25% reduction in power
–– 5% increase in area5% increase in area

Technology Mapping for Low Technology Mapping for Low
PowerPower

•• Problem statement:Problem statement:
–– Given Boolean network optimized in a technologyGiven Boolean network optimized in a technology--independent independent

way and a target library, bind network nodes to library gates to way and a target library, bind network nodes to library gates to
optimize a given costoptimize a given cost

•• Method:Method:
–– Decompose circuit into treesDecompose circuit into trees
–– Use dynamic programming to cover treesUse dynamic programming to cover trees
–– Cost function:Cost function:

–– Traverse tree once from leaves to rootTraverse tree once from leaves to root

Extension for LowExtension for Low--Power DesignPower Design
•• Power dissipation estimate:Power dissipation estimate:

•• Estimate partial power consumption of intermediate solutionsEstimate partial power consumption of intermediate solutions
•• Cost function:Cost function:

•• MinPower (nMinPower (nii)) is minimum power cost for input pin is minimum power cost for input pin nnii of of gg
•• power (g) = 0.5 f Vpower (g) = 0.5 f VDDDD

22 aaii CCii
•• Formulation:Formulation:

–– R = Total AreaR = Total Area, , ww gives their relative importancegives their relative importance
–– f = frequency, T = circuit delayf = frequency, T = circuit delay

TopTop--Level Mapping AlgorithmLevel Mapping Algorithm

•• Overall process:Overall process:
–– From tree leaves to root, compute tradeFrom tree leaves to root, compute trade--off curves for off curves for

matching gates from librarymatching gates from library
–– From root to leaves:From root to leaves:

•• Select minimumSelect minimum--cost solutioncost solution

•• Reduces average power by 22% while keeping the Reduces average power by 22% while keeping the
same delaysame delay
–– Sometimes increases area as much as 39%Sometimes increases area as much as 39%

CircuitCircuit--Level OptimizationsLevel Optimizations

Algorithm ComponentsAlgorithm Components

1.1. Find which gate to examine nextFind which gate to examine next
2.2. Use a set of transformations for the gateUse a set of transformations for the gate
3.3. Compute overall power improvement due to Compute overall power improvement due to

transformationstransformations
4.4. Update the circuit after each transformationUpdate the circuit after each transformation

Gate Delay ModelGate Delay Model
•• For every input terminal For every input terminal IIii and output terminal and output terminal OOjj of of

every gate:every gate:
–– T T iii,ji,j (G)(G) –– fanout load independent delay (intrinsic)fanout load independent delay (intrinsic)
–– RRi,ji,j (G)(G) –– additional delay per unit fanout loadadditional delay per unit fanout load

•• Total gate propagation delay from input to output:Total gate propagation delay from input to output:

–– Normalize all activities Normalize all activities ddyy by dividing them by clock by dividing them by clock
activity (activity (2f2f))

•• Probability of rising or falling transition at Probability of rising or falling transition at yy::

CMOS Gate UsageCMOS Gate Usage

•• Deep subDeep sub--micron technology:micron technology:
•• Delay of NAND/NOR to INVERTER delay lessens in Delay of NAND/NOR to INVERTER delay lessens in

deep subdeep sub--micron technologymicron technology
–– Series transistor connection Series transistor connection VVdsds and and VVgsgs smaller than smaller than

that for inverter transistorthat for inverter transistor
•• Encourages wider use of complex CMOS gatesEncourages wider use of complex CMOS gates
•• Important to order series transistors correctlyImportant to order series transistors correctly

–– Delay varies by 20%Delay varies by 20%
–– Power varies by 10%Power varies by 10%

CMOS Gate Power ConsumptionCMOS Gate Power Consumption
•• For seriesFor series--connected connected

transistors, signal with transistors, signal with
lower activity should be lower activity should be
on transistor closest to on transistor closest to
power supply railpower supply rail

Calculating Transition ProbabilityCalculating Transition Probability

•• Hard to find Hard to find ppzizi
–– Hard to determine prior state of internal circuit nodesHard to determine prior state of internal circuit nodes
–– Assume that when state cannot be determined, a transition Assume that when state cannot be determined, a transition

occurred (upper power limit)occurred (upper power limit)
–– More accurate bound: Observe that # conducting paths from More accurate bound: Observe that # conducting paths from

node to node to VVdddd must change from 0 to > 0 followed by similar change must change from 0 to > 0 followed by similar change
in # conducting paths to in # conducting paths to VVssss

•• Use # conducting paths that is smallerUse # conducting paths that is smaller
••

–– Use serialUse serial--parallel graph edge reduction techniquesparallel graph edge reduction techniques

Transistor ReorderingTransistor Reordering

•• Already know delay of longest paths through each gate Already know delay of longest paths through each gate
input from static timing analyzerinput from static timing analyzer

•• Should (for NAND or NOR) connect latest arriving Should (for NAND or NOR) connect latest arriving
signal to input with smallest delaysignal to input with smallest delay
–– Break gate inputs into permutable sets and swap inputsBreak gate inputs into permutable sets and swap inputs
–– Hard to compute which input order is best Hard to compute which input order is best –– can afford can afford

to enumerate all possible orderings and try themto enumerate all possible orderings and try them
•• Compute prob. (signal is switching while all other signals in Compute prob. (signal is switching while all other signals in

permutable set are on) permutable set are on) –– gives maximum internal node gives maximum internal node CC
charging charging // dischargingdischarging

Optimization AlgorithmOptimization Algorithm
•• Try to meet circuit performance goal (do forwards and then Try to meet circuit performance goal (do forwards and then

backwards graph traversal)backwards graph traversal)
•• During backwards traversal:During backwards traversal:

–– If a gate delay is larger than specified delay, reorder inputs to If a gate delay is larger than specified delay, reorder inputs to
decrease delaydecrease delay

–– End up with valid backwards delays for gates, but not valid End up with valid backwards delays for gates, but not valid
forward delaysforward delays

•• Repeat forward traversal if input reordering was doneRepeat forward traversal if input reordering was done
–– Continue reordering inputs if gate path delay specification is Continue reordering inputs if gate path delay specification is

exceededexceeded
•• Continue alternating forward/backwards traversals until no Continue alternating forward/backwards traversals until no

more reorderings happen, then proceed to power minimizationmore reorderings happen, then proceed to power minimization

Power MinimizationPower Minimization

•• Repeat alternating forward and backward traversalsRepeat alternating forward and backward traversals
•• Change: Determine delay increase for input order Change: Determine delay increase for input order

corresponding to least estimated power dissipationcorresponding to least estimated power dissipation
–– If increase less than available path slack, reorder inputsIf increase less than available path slack, reorder inputs

•• Available slack: difference between:Available slack: difference between:
1.1. Larger of maximum acceptable delay and longest path delayLarger of maximum acceptable delay and longest path delay
2.2. Delay of longest path through gateDelay of longest path through gate

–– Results on MCNC benchmarks Results on MCNC benchmarks –– reduced power by 7 to 8 %, reduced power by 7 to 8 %,
with no critical path delay increase, and very little area with no critical path delay increase, and very little area
penaltypenalty

Zero Slack AlgorithmZero Slack Algorithm

•• Arrival time in forward directionArrival time in forward direction from primary input to primary output.from primary input to primary output.
•• Choose Maximum arrival timeChoose Maximum arrival time so that all the inputs are reaching the gate. So the so that all the inputs are reaching the gate. So the

gate generate output.gate generate output.
•• Required time in backward directionRequired time in backward direction from primary output to primary input.from primary output to primary input.
•• Choose Minimum required timeChoose Minimum required time –– how fast the output from gate reach the input how fast the output from gate reach the input

of next gate. So that signal is propagated to next level.of next gate. So that signal is propagated to next level.
•• Slack= Difference between Maximum arrival timeSlack= Difference between Maximum arrival time-- Minimum required timeMinimum required time

Zero Slack AlgorithmSlack Algorithm

9696

Zero Slack AlgorithmSlack Algorithm

Micro transductors ‘08, Low Micro transductors ‘08, Low
PowerPower 9898

Transistor ReorderingTransistor Reordering

 Logically equivalent CMOS gates may not have
identical energy/delay characteristics

(1 2)y a a b 

b

b

a1

a1 a2

a2

y

b

b

a2

a1 a2

a1

y

b
a1

a1 a2

a2
y

b

b
a2

a1 a2

a1

y

b

A B C D

9999

Transistor Reordering cont’dTransistor Reordering cont’d
Normalized Pdyn

Activity (transitions / s) (A) (B) (C) (D) max. savings

Aa1 = 10 K

(1) Aa2 = 100 K 0.81 0.84 0.98 1.0 19%

Ab = 1 M

Aa1 = 1 M

(2) Aa2 = 100 K 0.58 0.53 0.53 0.48 10%

Ab = 10 K

 For given logic function and activity:
Signal with highest activity → closest to output
to reduce charging/discharging internal nodes

100100

Example: Static 2 Input NOR Gate

PA=1 = 1/2
PB=1 = 1/2

POut=0 = 3/4
POut=1 = 1/4

P0→1 = POut=0 * POut=1

= 3/4 * 1/4 = 3/16

Then:

Transition Probabilities for CMOS GatesTransition Probabilities for CMOS Gates

A B Out

1 1 0

0 1 0

1 0 0

0 0 1

Truth table of NOR2 gate

If A and B with same input signal probability:

Ceff = P0→1 * CL = 3/16 * CL

P01 = Pout=0 * Pout=1

NOR (1 - (1 - PA)(1 - PB)) * (1 - PA)(1 - PB)

OR (1 - PA)(1 - PB) * (1 - (1 - PA)(1 - PB))

NAND PAPB * (1 - PAPB)
AND (1 - PAPB) * PAPB

XOR (1 - (PA + PB- 2PAPB)) * (PA + PB- 2PAPB)

Transition Probabilities cont’dTransition Probabilities cont’d
 A and B with different input signal probability:
 PA and PB : Probability that input is 1
 P1 : Probability that output is 1

 Switching activity in CMOS circuits: P01 = P0 * P1

 For 2-Input NOR: P1 = (1-PA)(1-PB)
 Thus: P01 = (1-P1)*P1 = [1-(1-PA)(1-PB)]*[(1-PA)][1-PB]

Logic RestructuringLogic Restructuring

Chain implementation has a lower overall switching activity than tree Chain implementation has a lower overall switching activity than tree
implementation for random inputs implementation for random inputs

 BUT:BUT: Ignores Ignores glitchingglitching effectseffects

 Logic restructuring: changing the topology of a logic
network to reduce transitions

A
B

C
D F

A
B

C
D Z

F
W

X

Y0.5

0.5

(1-0.25)*0.25 = 3/16

0.5
0.5

0.5

0.5
0.5

0.5

7/64 = 0.109

15/256

3/16

3/16 = 0.188

15/256

AND: P01 = P0 * P1 = (1 - PAPB) * PAPB

Source: Timmernann, 2007

Input OrderingInput Ordering

Beneficial: postponing introduction of signals with a Beneficial: postponing introduction of signals with a highhigh
transition rate (signals with signal probability close to 0.5)transition rate (signals with signal probability close to 0.5)

A
B

C

X

F

0.5

0.2
0.1

B
C

A

X

F

0.2

0.1
0.5

(1-0.5x0.2)*(0.5x0.2)=0.09
(1-0.2x0.1)*(0.2x0.1)=0.0196

AND: P01 = (1 - PAPB) * PAPB

Transistor Resizing MethodsTransistor Resizing Methods

•• Datta, Nag & Roy: resized transistors on critical paths to Datta, Nag & Roy: resized transistors on critical paths to
reduce power and shorten delayreduce power and shorten delay

•• Wider transistors speed up critical path and reduce power Wider transistors speed up critical path and reduce power
because you get sharper edges, and therefore less shortbecause you get sharper edges, and therefore less short--circuit circuit
power dissipationpower dissipation
–– Penalty Penalty –– larger transistors increase node larger transistors increase node CC, which can increase , which can increase

delay and powerdelay and power
–– Increased drive for present block, and greater transition time for Increased drive for present block, and greater transition time for

preceding block (due to larger load preceding block (due to larger load CCLL) may increase present) may increase present
block shortblock short--circuit currentcircuit current

–– Simulated annealing algorithm tries to optimize gates on Simulated annealing algorithm tries to optimize gates on NN most most
critical pathscritical paths

Micro transductors ‘08, Micro transductors ‘08,
Low PowerLow Power 105105

Transistor Sizing for Power MinimizationTransistor Sizing for Power Minimization

•• Larger sized devices: only useful only when interconnects dominateLarger sized devices: only useful only when interconnects dominate
•• Minimum sized devices: usually optimal for lowMinimum sized devices: usually optimal for low--powerpower

Small W’s

Large W’s

Higher Voltage

Lower Voltage

Lower Capacitance

Higher Capacitance

Source: Timmernann, 2007

To keep
performance

Transistor SizingTransistor Sizing
•• Optimum transistor sizingOptimum transistor sizing

• The first stage is driving the gate capacitance of the second and
the parasitic capacitance
• input gate capacitance of both stages is given by NCref, where
Cref represents the gate capacitance of a MOS device with the
smallest allowable (W/L)

Transistor SizingTransistor Sizing
•• When there is no parasitic capacitance contribution (i.e., When there is no parasitic capacitance contribution (i.e., αα = 0), the = 0), the

energy increases linearly with respect to N and the solution of utilizing energy increases linearly with respect to N and the solution of utilizing
devices with the smallest (W/L)devices with the smallest (W/L) ratios results in the lowest power.ratios results in the lowest power.

•• At high values of At high values of αα, , when parasitic capacitances begin to dominate over when parasitic capacitances begin to dominate over
the gate capacitances, the power decreases temporarily with increasing the gate capacitances, the power decreases temporarily with increasing
device sizes and then starts to increase, resulting in a optimal value for device sizes and then starts to increase, resulting in a optimal value for
N.N.

•• The initial decrease in supply voltage achieved from the reduction in The initial decrease in supply voltage achieved from the reduction in
delays more than compensates the increase in capacitance due to delays more than compensates the increase in capacitance due to
increasing Nincreasing N..

•• after some point the increase in capacitance dominates the achievable after some point the increase in capacitance dominates the achievable
reduction in voltage, since the incremental speed increase with reduction in voltage, since the incremental speed increase with
transistor sizing is very smalltransistor sizing is very small

•• Minimum sized devices should be used when the total load capacitance Minimum sized devices should be used when the total load capacitance
is not dominated by the interconnectis not dominated by the interconnect

SummarySummary
•• LogicLogic--level multilevel multi--level logic optimization is effectivelevel logic optimization is effective

–– State assignmentState assignment
–– Modified MIS algorithm Modified MIS algorithm

•• LogicLogic--level Technology mappinglevel Technology mapping
–– TreeTree--covering algorithm is effectivecovering algorithm is effective

•• CircuitCircuit--level operations are effectivelevel operations are effective
–– Transistor input reorderingTransistor input reordering
–– Transistor resizingTransistor resizing

Oklobdzija 2004Oklobdzija 2004 Computer ArithmeticComputer Arithmetic 114114

Addition of Binary NumbersAddition of Binary Numbers
Full Adder. The full adder is the fundamental building block
of most arithmetic circuits:

The sum and carry outputs are described as:

iiiiiiiiiiiiiiiiiii cbcabacbacbacbacbac 1

iiiiiiiiiiiii cbacbacbacbas 

Full
Adder

CinCout

si

ai bi

Oklobdzija 2004Oklobdzija 2004 Computer ArithmeticComputer Arithmetic115115

Addition of Binary NumbersAddition of Binary Numbers

Propagate

Propagate

Generate

Generate

Inputs Outputs

ci ai bi si ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Oklobdzija 2004Oklobdzija 2004 Computer ArithmeticComputer Arithmetic 116116

FullFull--Adder ImplementationAdder Implementation

Full Adder operations is defined by equations:Full Adder operations is defined by equations:
iiiiiiiiiiiiiiiiii cpcbacbacbacbacbas 

iiiiiiiiiiii cpgbacbacbac 1

One-bit adder could be
implemented as shown

Carry-Propagate:
and Carry-Generate gi

iii bap 

iii bag 
cout cin

si

ai bi

Oklobdzija 2004Oklobdzija 2004 Computer ArithmeticComputer Arithmetic 117117

HighHigh--Speed AdditionSpeed Addition

iii cps 

iiii cpgc 1

One-bit adder could be
implemented more efficiently
because MUX is faster

iii bap 
iii bag 

0

1s

bi
ai

cout

si

cin

Array Multipliers with Lower Power ConsumptionArray Multipliers with Lower Power Consumption

Fig. 26.5 An array multiplier with gated FA cells.

p0

p1

p2

p3

p4p6p7p8

0 0 0

p9 p5

0 0

0

0

0

0

0

a0a1a2a3a4

x4

x3

x2

x1

x0
Carry

Sum

New and Emerging MethodsNew and Emerging Methods

Local
Control

Local
Control

Local
Control

Arithmetic
 Circuit

Arithmetic
 Circuit

Arithmetic
 Circuit

Data readyData

Release

Part of an asynchronous chain of
computations.

Dual-rail data encoding with
transition signaling:

Two wires per signal

Transition on wire 0 (1) indicates
the arrival of 0 (1)

Dual-rail design does increase
the wiring density, but it offers
the advantage of complete
insensitivity to delays

The Ultimate in LowThe Ultimate in Low--Power DesignPower Design

Some reversible
logic gates.

A
B
C

P = A
Q = B
R = A B  C

TG

(a) Toffoli gate

A
B
C

FRG

(b) Fredkin gate

A

B

P = A

Q = A  B
FG

(c) Feynman gate

A
B
C

P = A

R = A B  C
PG Q = A  B

(d) Peres gate

P = A

R = A C  A B
Q = A B  A C

B

0

C
1

0

+

A
Cout

s
(sum)

B

A

G

s

Reversible binary full
adder built
of 5 Fredkin gates,
with a single Feynman
gate used to fan out
the input B. The label
“G” denotes “garbage.”

3.13.1

3.23.2

3.33.3

3.33.3

3.33.3

