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Motivation

—

entional automated-layout synthesis method:

ribe design at RTL or higher leve
enerate technology-independent rea
=Map logic-level circuit to technology |i

“and higher performance

1Ization

orary

=z s-e timization goal: shifting from low-area to low-power

_‘
—
T —

* Need accurate signal probability/activity estimates
* Consider low-power needs at all design levels
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Behavioral-Level Transformations




Algorithm-Level Power

« Reductions.vs. Other Levels

Behavioral and Algorithm Level

Architectural Level

= _Logic/Circuit

Technology/Circuits

m———
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)gic/Circult Synthesis for Low-
e







~“Design Flow

— =

--;_ nthesis — No; 0] VE Qh_
‘design description: RTL or Logic level
;ynthesis widely used

|~
-"_:"3 -

& State Assignment — opportunity for power saving

_.___ '_

:f‘__ tog|cSynthe5|s look for common subfunctions — opportunity
— —for power saving

* Custom VLSI design - size transistors to optimize for power, area, and
delay

* Library-based design — technology mapping used to map design into
library elements




SM and Combinational Logic

—

. Synthe5|s —

ikelihood of state transitions during state
Jnment
linimize # signal transitions on present state inputs V
Sldel‘ signal activity when selecting best common

5 -expression to pull out during multi-level logic

_‘
—

m—

~ synthesis

— Factor highest-activity common sub-expression out of
all affected expressions




ffman FSM Representation

Combinational Logic
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Logic level optimization for low power

e Logic synthesis

o FSM synthesis
Minimize the switching during the state transition

» Combinational synthesis
Power-conscious multi-level logic optimization

e General structure
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Combinational Logic
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Representation of FSM

e PSTG: Probabilistic STG

o P, State transition probability
from §;to S,

& 'anjm=1

e Example




Power metrics for FSM synthesis

e A measure for the switching between states
» Hamming distance H(S;, §;) = « {S; XOR §))

* ¢X): returns the # of 1s in x

e Power estimation
o Average power

Power,, = % Voo > C.D(i)

o Normalized power

© =" fanout D(i)



State assignment for FSM (I)

Use PSTG shown in the previous slide

L;: the label associated with the edge from S; to S,
P,: signal probability of input x

value(x): logic value of x from the set {1, O, -}

xeinputs _of _ Ly
W =P  when value(x)=1

=1-P when value(x)=1

=1 when value(x)=1



State assignment for FSM (1I)

e Objective function

o Minimize the following cost function
y =¢° Everall edges F:}in(Si1 SJ)
o Oneway to solve the problem: Simulated anealing

iterative method

For each iteration, either interchage two codes of assign a new code
to a state

= If v is decreased = accecpted
If v is decreased =» accepcted with the probability of e-letiiTemp
Temp is an anealing temperature
Terminated when Temperature is under the given value

unassigned code¢ to the state that 1s randomly picked for exchange. The move
1s accepted if the new assignment decreases y. If the move increases the
value of the objective function vy, the move is accepted with a probability of
e 10MI/Temp where |8(y)| is the absolute value of the change in the objective
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Example of state assignment for FSM

A state machine making output as “1” when it observes the five

consecutive “1"s from the input
The signal probability of each input =0.5

o Thus, the state transition probability of each edge = 0.5

Coding1=2y=10, Coding2 =» ++=95.5
Same HW cost

From SPICE simulation Coding 2 consumes 15% of less power

Coding1  Coding 2
S1 010 000
S2 101 100
S3 000 111
S4 i1 010
S5 100 011




Power-conscious multi-level logic opt. (I)

e Before talking about power...
e Multi-level vs. two-level

o Multi-level: the path from input to output may have gates more
than two =» Area / Delay efficient

o Two-level: AND plane + OR plane = Good for PLA

e Build alogic network for the given input boolean equations
== p = ce+de g R R R
a—+b ,
p+ 4’

r+ U
ac+ad+be+ b+ e
de+ g + qc

a'd + bd + d + aé
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Basic Representation #1: Logic Network

i 3 v=a'd+bd+c'd+ae' : w E
| A p=ce+de \ r=p+a AI s=r+b ol
SR V20l o :
= | [EERA
== ‘E‘V t=ac+ad+bc+bd+e y
— UK -

| g=a+b \ u=q’c+qc'+qc — Z

-
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ac + ad + be + bd + ¢
g'c+ g + ge
a'd + bd + ¢'d + ae’
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Basic Representation #2: Logic Network Grap
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- v=a'd+bd +c'd + ae' !El .
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; p=ce+d=;| r=p+a s=r+b i
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Logic network

a=arh A el
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Fig. 8.3(a)

-----------------------------------------------------------------------

graph
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)




a'd + bd + 'd + ae’
a +b +ec+d

ac + ad + be + bd + €
a-+ b+ ¢
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Multi-Level Optimization Example: Initial Design

i _
g=a+b | u=q'c+qc' +qc , — Z

E A v=a'd+bd +c'd+ ae’ : wi i
¢ . | i
| p=c¢+de—A‘ r=p+ad AI s=r+b x|
: KRS | :
K :
== : ""“l;.' t=ac+ad+bc+bd+e ¥l !
= X )




‘Transform #1: ELIMINATE (collapse)

Eliminate a node: “collapse” network structure

A R A A R S R R e e e S S S S S S S S SSSSSSE S S EE- - ...

2 v=a'd+bd+c'd+ae : w

b.- _ N i

(, p=ce+de {=p+ﬂ’ s=r+b X i
eliminate(v,) |

) t=ac+ad+bc+bd+e yf

g=a+b A{ u=q'c+qc’ +qc . — Z E




- Transiorm #1: ELIMINATE (collapse)

Eliminate a node: “collapse” network structure

-----------------------------------------------------------------------

v=a'd + bd +a'c + ae’ Ll [

A p=ce+de
=== :
= A r=ac+ad+bc+bd+e Y]
e i
= .
1

| g=a+b A‘ u=qg'c+gc’' +gc | z E

L — e R R i Bl e e




" Transform#2: DECOMPOSE

‘ Break 1 larger node into several smaller nodes\

: + c'd+t;:'\ ‘ Rid E
p - // decompose(v,)|

\I r=p+a \-l s=r+b X

N t=ac+ad+bc+bd+e ¥

g=a+b A{ u=q'c+qc’ +qc . — 2]

]
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Transform #2: DECOMPOSE

Break 1 larger node into several smaller nodes
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| Transform #3: EXTRAGTION

Create/extract “common subexpression” for 2 or more nodes
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® Transform #3: EXTRACTION

Create/extract “common subexpression” for 2 or more nodes




Transform #4: SIMPLIFIGATION

Perform optimization (usually Boolean) within a single node

- O O R O S O R M M R R e eSS SSSSSSSEEEEEEE-E--——-——————

2 v=a'd+bd+c'd+ae’ : W

" . 'i
L7 p=r:e+de—g‘ r=p+a AI s=r+b x|

/X7 N
w;‘iiﬂl\\

XN | t=ac+ad+bc+bd+e ——) '
/' A“‘*( | ‘sr’mph’fy( v,)\ i
/ : .{=q’c+q¢’+y T E
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| Transiorm #4: SIMPLIFICATION

Perform optimization (usually Boolean) within a single node

]
A v=a'd+bd+c'd+ae W

p:ce+deA(r=p+a’ Al.r=r+b" —] x|
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- Transform #39: SUBSTITUTION

Find an existing “common subexpression” for 1 or more nodes

- ol O B B B SN BN EE N BN N N EE W MR SR e R e e ee e SR SR R Em Em oEmmn mm




Transform #5: SUBSTITUTION

Find an existing “common subexpression” for 1 or more nodes

- - o e w E

: v=a'd+bd+c'd+ae E
s " . \ E
E ‘ p=ke A{ r=p+d s=r+b x|
Ve ‘A“ E: S :
- AV, S )

: ’ N k=c+d f=kg+e L

D —y

: |




~1 -

j = a+b+¢

k= e—4+d

g = a-+b

8 = ke+a + b

I = kg—+e

w = g-++c

v = jd+ ae’
J=a'+b+c” v=]d+ae [w]

s=ke+a + b [X]

k=c+d|—Jt=kgs+e V]
gq=a+hb >l"‘~u=||:|+t: [Z]




Power-conscious multi-level logic opt. (II)
— 1

e Major procedures

o Kernel

finds some or all cube-free multiple or single-cube divisors of each of
the functions

retains those divisors that are common to two or more functions
To factor out the kernels, use algebraic division method
- «  Quotient = Kernel
e Substitution

simplify the network by using the best few common divisors factored
out

| | |.|.
j l"l"l 1:|.|.

repeated until no common divisors can be found




ytroduction to our technique

&~ 2 A variable or a constant eg. a,b,2,3.14
— C lsl=: Product of literals e.g. +3a2b, -2a3b?c
: Sum of cubes e.g. +3a%b - 2a3b?c

. No literal or cube can divide all
he cubes of the expression

. A cube free sub-expression of an expression,
e.g. 3—2abc

. A cube that is used to divide an expression
to get a kernel, e.g. a?b




Power-conscious multi-level logic opt. (III)

e Example of Kernel computation
o Function: fx = ace + bce + de + ¢

o Kernel set
Divide fx by a = Get ce = Not cube free
Divide fx by b = Get ce = Not cube free
Divide fx by ¢ = Get ae + be = Not cube free
Divide fx by ce = Geta + b = Cube free = Kernel
Divide fx by d = Get e = Not cube free
Divide fx by e = Get ac + bc + d = cube free = Kernel
Divide fx by g = Get 1 = Not cube free
Expression fx is a kernel of itself because cube free

M

M

L I.I.I !
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o K(fx) = {(at+b); (ac+bc+d); (ace+bce+de+g)}




“"Kernels and Kernel
Intersections

DEFINITION: ' ' —

| expression is if no cube divides the expression evenly (i.e. there is no
al that is common to all the cubes).

~ ab+c iscubefree
= ab + ac and abc are not cube-free

Note = a cube-free expression have more than one cube.

of an expression F are the set of expressions
D(F) = {F/c | cis a cube}.




“"Kernels and Kernel
Intersections

DEFINITIOI -

ke of an expression F are the set of expressions
) = {G | G € D(F) and G is cube-free}.

..::._:_ words, the kernels of an expression F are the

C(F) is used to denote the of F.



T Example

Example:

pdf + bef + cdf + cef + g

co-kernels

df, ef
af, bf, cf
1




“Kernels: Example _ sy
= adf + aef + bdf + bef + cdf + cef + bfg + h

df+ef
df+ef+fg

d+e+g
d+e
a+b+c
b
(a+b+c)(d+e)+bg
F




“Kerneling Mustrated

K-
'
JC
U
s i
Y
e

|+ €) + de(b + cf)

a

- omn

c(d+e) + de=
d(c+e) + ce =

- _'._b




Kerneling Hlustrated

kernels

a((bc + fg)(d + e) + de(b + cf))) + beg
(bc + fg)(d + e) + de(b + cf)

c(d+e) + de
d+e

cte

c+d

b(d + e) + def
bFef

floc=ad +ae=a(d +e)

42
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e Internal nodes of g: v,, V.,
"':_ ,VM:M:):O

—

. .

T

.
T

- Power-conscious multi-level legic opt. (IV)

e A common sub-expression
of functions

o g=0(Uq Uy, ..., Ug), K>=1

e Functions: fy, 5, ..., f, L >=
2

e A example of factoring
e @ is factored out

e Signal probabilities and
acitivities are unchanged

o Capcitiances are changed




Power-conscious multi-level logic opt. (V)
—

e Power saving for inputs

(L _I)Va’za’cﬂznukl}(nk)

» D(u,): actiVity at node u,

e N, # of gates belonging to node g and driven by signal u,
o C,: the load capacitance due to a fanout equal to one gate

_ e Power saging for internal nodes
= (L— 1)1/;%r C, Z nva(vm)

: k=1 _
e Total power saving

AW (g)=(L-1V;,Co(> n, D)+ n, D(v,))

k=1 k=1

l I |1}
.‘ |




Power-conscious multi-level logic opt. (VI)

e |Impact on area
Ad(g)=(L-D[I(g)-1]-1

e Net saving

L S AT®,, M)

== 7, 4

o W5 Average power of the input Boolean network
o A;: Area of the input Boolean network
L ] GW + GA = 1




Equivalint pin ordering

e Change the input connection based on the signal
probability and signal activity

e Suppose that B is high and A is switching from low to high

L =g

VDD VDD
= . E 3 5 E _a
s | TT | TT
i F‘ I Cout 5 F I Cout
F_l Ci - F—'L Ci i
1 Il

Charges in C,; and C, are discharged Charges in C,; are discharged




Probabilistic State Transition
Graphs (STGs)

Showing state transitions not only indicate input values
ng transitions and resulting outputs

have labels p; giving conditional probability of transition
tate Sito S,

siven that machlne IS in state S,
"_-‘_. }_i‘-_-“—- Jirectly related to signal probabllltles at primary inputs

:

* Introduce self-loops In STG for don't care situations to
transform incompletely-specified machine into completely-
specified machine

2 ‘..-
P

il
—
——







Relationship Between State
SS|gnment and Power

ance betwee Sand S;

(S; SJ) # bits in which the assignments dlffer

._ge OSSN Power,,, = 3V, ) C;D(i)

avg

_ _ () = signal activity at node |
= Approximate C. with fanout factor at node |

_‘
—
__.—-—

_' Average power proportional to:

® = Y fanout,D(i)
f




T,
Handling Present State Inputs
| aetransmons (Si, Sj) of highest probability

g ) by changing state assignment of Si,

c——

""es system simulation of circuit over many clock
'E'o , hoting signal values and transitions

=1l one-hot design is used, note that H = 2 for all states

= "_-r-
-, __-

—

— Impossmle to obtain optimum power reduction
—Uses too many flip-flops

* Optimization cost function:
Y = ¥ p,H(S,S))

vvel all edges




imulated Annealing Optimization
S Algorithm =~

ed moves.
terchange codes of two states

"'|gn an unassigned code to a state that is randomly
= ICkEd for an exchange

5Z%'Tiztept move if it decreases g

~ ¢ |fmove increases g accept with probability:
e -1d(g |/ Temp




E)?aimple State Machine

—

e

0/0. 111




~State Assignments

5% MG er than coding 2
Codlng 1 Coding 2




Multi-Level Logic Optimization
~ for Low Power

national logic is F (1,
€t of primary inputs
': fesent state inputs
110 estimate probabilities and activities of V/ inputs (same
next state outputs but delayed one clock period) in order to

sm——

=3 ’fhe3|ze logic for minimum power

—

_4-I-
.

- —— Use methods of Chapter 3

_' Randomly generate PI signals with probabilities and activities
conforming to a given distribution

= Get D (v;) = transition activity at input v; (transitions / clock
period)

— Get from fast state transition diagram simulation

_‘
—
__.—-




Power-Driven Multi-Level Loglc
~ Optimization

arkelev v 100

es set of Boolean functions as input

ftedure kernel finds all cube-free multiple or single-cube
jvisors of each Boolean function

Retains all common divisors

- 3 actors out best few common divisors

=— Substitution procedure simplifies original functions to use
factored-out divisor

* Original criteria for selecting common divisor:
— Chip area saving

* New criterion: power saving




= ol'\"?r Expressmn Factoring

Bl v, ..., uy), K=Tiscommon sub-expression

) factored out.of L functions, signal probabilities and
es at all circuit nodes are unchanged

"'ances at output of driver gates u,, u,, ..., U, change
'rives L-1 fewer gates than before
. '_-- ed ced power:

X
L - 1)V5C, Z n, D(uy)

k= |

* D (x) = activity at node x
* n, = # gates belonging to node g and driven by uy




Factoring (continued)

Iy one copy now of g instead of L copies

L Tfewer coples of internal nodes Vi, Vo, vy Vi IN
ictored-out hardware for switching and dissipating
ower

— Po "er saving:

_-I.
T i
=
-

-

——
—
—
—
e

I-I-
—
_._———_

Total power saving'

AW(g) = (L - V)V}C, }:u D(u,) + Zn D(v, ) (4.21)

m o= |




Factoring (concluded)

T

——

=+ literals in factored form of g
CELEVER A 4(g) = (L - 1)[T(g) —1] - 1
== Net saving of power and area:
VIW(g) AA(g)
+ ay
Wy Ay
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Optimization Cost Criteria

ccey pted optlmlzatlon criteria for multi-level logic are to minimize

fféa occupied by the logic gates and interconnect
(approximated by literals = transistors in technology
“independent optimization)

Crltlcal path delay of the longest path through the logic

;- Degree of testability of the circuit, measured in terms of the
= percentage of faults covered by a specified set of test vectors
- for an approximate fault model (e.g. single or multiple stuck-
at faults)

Power consumed by the logic gates
Noise Immunity
Wireability

while simultaneously satisfying upper or lower bound constraints placed on
these physical quantities




Factored Form

¥

ﬂ.f

ab’c
ab + c'd
(a+b)(c+a' +de)+ f

e Where 3, a, b’, ¢, are called literals
e Factored form can be derived from a SOP

ace + ade + bce + bde + €’




X=(a+b)c + d

Note:

literal count o€ transistor count o€

area
(however, area also depends on
wiring)




y e Y

Definition

e A factored form is
— A product or a sum, where
— A product is
e Either a single literal
e Or a product of factored form
— Asum is

e either a single literal
e Or a sum of factored form

a-+be
(..(..‘-'-I'I 5 b)ﬂff =1 f) (ﬁ: - b“’) P



Factored form ig not unique _

ab + ¢(a + b) abg + acg + adf + aef + afg + bd + ce + be + cd,
be+a(b+c)

ac+ bla + c).

(b+c)(d+e)+ ((d+e+g)f+ (b+c)g)a, (12 literals)
(b+c)(d+e+ag) + (d+e+g)af, (11 literals)
(af +b+c)(ag+d+e). (8 literals)

All equivalent

"here are 12 literals in the first form
"here is only 8 literals in the 3™ one

"ake the first one and multiply out, we can get the
original expression

— Without using xx'=0 and xx=x

Take the 3 one and multiply out, we get a different
expression

— Because we have afag




Factoring Eree

((¢"+b)cd+e)(a+b') + €,

e A sub-tree is called a factor
— (a+b")
— cd(a’+b)

e Two trees are equivalent if they
represents the same function

e Two trees are syntactically
equivalent if they are isomorphic
— (a+b)(c+d)e = (a+b)e(c+d)




adf + aef + bdf + bef +cdf +cef +bfg+h
(a+b+c)(d+e)f+bfg+h

kernel \ co-kernel \ level \

d+ e G, C} 0
d+e+g bf
a-+b+c df, ef

(a+b+c)(d+e)+bg /
((a+b+c)(d+e)+bg)f+1h 1

F/a = df+ef 1s not a cube-free divisor
A kernal may have more than 1 co-kernel
If the original expression is cube free, a co-kernel can be the “1”







1) Kernel Extlmonsider the Boolean Function
| i + VWY + Xy + uz + vz.
s0-kernel/kernel paris of F. State their levels...

—

— =

aehraic Division 0 DOID -
tudied an algorithm to perform weak algebraic
“class that can be used to decompose a function F, algebraically,as
1d = Gdivisor -Hquotient+Rremainder. Divide F = ab+ac+ad’+bc+bd’ by
lowing:
=a + b. What is the quotient and the remainder?
'=c+d’. What is the quotient and the remainder?




= O?‘ﬁmization Algorithm

Algorithm: Power Dissipation Driven Multilevel Logic Optimization

Inputs: Boolean network F, input signal probability P(x;, = 1) and transi-
tion activity D(x;) for each primary input x;, N,,.

Output: Optimized Boolean network F’, P(s = 1) and D(s) for each node
in the optimized network.

Step 0: Compute (v = 1) and D(s) for cach node s in F.

Step 1: Repeat steps 2-4,

Step 2: G' = U, pK([), where K(f) = set of all divisors of f. The set
~ of kernels (cube-free divisors) is computed for each function. G’ is the union
= of all the sets of kernels.

—— Step 3: G ={glg(e G) A(ge K(f) A(ge K(f) AGi+#j) The set
of kernel intersections, G, is the set of those kernels that apply to more than
one function.

Step 4: Repeat steps 5-7 N, times.

Step 5: Find g, p,, d, such that

(8 € G) A (Vh € G)[S(8) 2 S(h)] A [p,=P(g=1)] A[d,=D(g)]




]
1 I'l'

1f AA(g) < 0, terminate procedure.

Optimization Algorithm
(concluded)”

The kernel intersection g brings about
the largest net saving. The signal probability and transition activity of the
output signal of g are remembered. If the area component of net saving is
negative, there are no more multiple-cube divisors common to two or more
functions and so we stop.

Step 6: For all [ such that J € F A g € K(/), substitute variable g in [ in
place of the subexpression glu,, wy, ..., 4, ). Each lunction, which has the
expression g as one of its kernels, hus the new variable g substituted into it
in place of the expression,

Step 7. F = FU(g),G = G - {g). Here, P(g = 1) =p_, D(g) = d,. The
new function g is added to the set of functions F. The newly added nodt. IS
assigned signal probability and activity values from step S.




. .

e At the beginning of the optimization procedure, signal probabilities and activities for each

internal and output node is computed. Each time a common divisor g = g{u;,Uz,..,ux) is

factored out, the P{u; = 1) and A(uz), | < k < K, are known but P{v, = 1) and A{v,,),

1 < m < M, are not. The latter are computed when AR(g) is being evaluated and are
retained. Thus once again P(s=1) and A(s), for each node s are known.

The parameter N is used to control the number of kemel intersections (cube free divisors

common to two or more functions) which are substituted into all the functions betfore the set

of kernel intersections is recomputed. Recomputing after a single substitution is wasteful as

.'.:1';,._.--.- g
only some of the functions have changed. On the other hand, with each substitution, some

of the kernel intersections become invahd.

Algorithm : Reliability driven multilevel logic optimization

Inputs : Boolean network F, input signal probability P(z; = 1) and activity A(z;) for

each primary input z;, Ny

Output : Optimized Boolean network F', P(s = 1) and A(s) for each node in the opti-

mized network.



Step @ : Compute P(s=1) and A(s) for each node sin F. -
Step 1 : Repeat steps 2 through 4.
Step 2: (7 = User K(f), where K(f) = set of all divisors of £. Set of kemnels (cube free

divisors) is computed for each function. (* is the union of all the sets of kernels.

Step 3: G =1z [ (2€G) A (2 K(fi)) A (g€ K(f;)) A (i # i)}.G, the set of

kernel intersections, is the set of those kemels which apply to more than one function.
Step 4 : Repeat steps 5 through 7 N, times
Step 5: Find g. p,, d; such that

(g€ G) A (VheG)[S(g) 2 S(R)] A (py=Plg=1)) A(d, = Alg))

If AA(g) < (), terminate procedure. g is the kernel intersection which brings about largest
saving. The signal probability and activity of the output signal of g are remembered. If the
area component of total saving is negative, there are no more multiple-cube divisors common
to two or more functions and so we stop.

Step 6 : For all f such that f € F A g € K(f), substitute variable g in f in place of
the subexpression g(u,,us,..,ux). Each function, which has the expression 7 as one of its
kernels, has the new variable g substituted into it in place of the expression.

Step 7: F=F|J{g}, G=G—{g}. P(g=1)=p,, A(g) =d,. New function g 1s added
to the set of functions F. The newly added node is assigned signal probability and activity

values trom step 5.

a——




ample Unoptimized Circuit

ol

l"l' 1 |_1I|.| i

D

Damr==D

P(a) = P(b) = P(c) = P(d) = P(¢) = P(h) = 0.5
D(a) = 0.1, D(b) = 0.6, D(¢) = 3.6, D(d) = 21.6,

D(e) = 1296, D(h) = 3.6

=

Y
/
p—
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Optimization for Area Alone
g ) [
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Optimization for Low-Power Alone

ge area but reduces power from476:12 to 423.12

g




xample Signal Probabilities

- o P1.P2

}

g

A ‘)\ 1-(1-P1)(1-P2)

P2 g




Propagating Combinational

2 Signal Activities

P1.A2 + P2.A1

—

| A\
..... 4 N (1-P1).A2 + (1-P2).A1

P2, A2 Z/
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If AA(g) < 0, terminate procedure. The kernel intesection g brings about
the largest net saving. The signal probability anf mmsition activity of the
output signal of g are remembered. If the area somgenent of nct saving is
negative, there are no more multiple-cube divises cammon to two Or more
functions and so we stop.

Step 6: For all f such that fE F Ag € K(f),mbstkute variable g in f in
place of the subexpression gluy, s enns uy ). Emh Raction, which has the
expression g as one of its kernels, has the new warialie g substituted into it
in place of the expression.

Step 7: F=FUlghG =G — (g). Here, P(g= 1= p,, D(g) = d,. The
new function g is added to the set of functions F. The newly added node is
assigned signal probability and activity values from:stge5.

An Example

!
‘ Let us consider a small circuit to illustrate the apgication of the above
i procedure. i

i et F = {f,.[.) be a two-output circuit given iy

\ v

f‘=f1d+hcd,fae + fo = a + bc+ dk+ eh L
e

1%

The signal probabilitics and the transition actwitiesat the primary inputw—
are assumed (o be

P(a) = P(b) = P(c) = P(d) = P(ey=#h) = 0.5
D(a) = 0.1, D(b) = 0.6, D(c) = 3.6.D(H = 21.6, L»‘.'
D(e) = 129.6, D(h) = 3.6

I

i

Since F is a small circuit, we recompute the st aff kernel intersections
after every substitution, that is, Ny = 1%
Figure 4.24 shows the circuit F as an interconmctiue of logic gates.
The arca and power dissipation of the unoptimzedgircuit are 3
A(F)=6+6=12 W ( F) =335 units
The sets of kernéls for f, and f, are computed },(\ﬁ‘

K(f) = (a +bc,d+e)  K(f) =fotbe,d +e)

The union of the sets of kernels of all the functios; G is computed as
G’ = {a + bc,d + €} 3

The set of kernel intersections, G, that is, those keme¥ksthat apply to two or
more functions, is computed as

G={a+bc,d+e}
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K.

0 |o

1
a

.'_'a\)“ <
12— ¥ y

Figure 424 Unoptimized circuit.

Let us first consider a, = 1.0, 2, = 0 (area optimization only). The ne:
saving due to each of the kernel intersections, £ € G, is determined and th:
s=rnel intersection corresponding to the largest net saving is selected:

g=a+bc,AA(g) =1, AW(g) = 6.4, P(g) = 0.625,
D(g) = 1.125, S(g) = 0.083 :
g=d+e AA(g) =0, AW(g) =151.2, P(g) = 0.75,
D(g) =756, S(g) =0

Hence, g =a + bc is selected. It is substituted into functions in F anf
added to F to give F*:

F* ={f1, [, f3}
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>

f2

Figure 4.25 Complex gate implementation of the circuit optimized for area alone.

where

fi =a + be
fi =fid + ae
fi=fs +dh+eh
The total area and power dissipation of circuit F* are
Ar(F*) =344+4=11  W,(F*) = 476.5 units

No more kernel intersections can be found and the procedure terminates.
The complex logic gate implementation of the optimized circuit is shown in
Figure 4.25. It requires 28 transistors.

Next we consider a, = 0, ) = 1.0, which causes optimization for low-
power dissipation. Once again each of the kernel intersections g € G is
evaluated and the best is selected:

g=a+bc, P(g) = 0625 D(g)=1.125 AA(g) =1,

AW(g) = 6.4, S(g) =0.013
g=d+e,AA(g) =0, AW(g)=1512, P(g) =0.75,
' . D(g) =756, s(g) =03
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1

This time g = d + e is selected. It is substituted into functions in £ and
added to £ to give £7%:

F** = {fi.[2. f5)
where
fa=d+e
fi =fia +bed
fo=a + bc+ fih
The total area and power dissipation of circuit F*~ are

A (F*<)=2=+5+5=12 Wy(F~") = 423.12 units

No more kernel intersections can be found. The complex logic gate
implementation of the optimized circuit is shown in Figure 4.26. It requires
30 transistors.

Figure 426 Complex gate implementation of the circuit optimized for power,

o b i




-S 'age ProCcess
te assignment problem
— ultl level combinational logic synthesis based on

= mpower dissipation and area reduction

—+ Result:

— 25% reduction in power
— 5% Increase In area




Technology Mapping for Low
Power =

[ ]
AL-‘-... .

Boolean network optimized in a technology Independent
y and a target library, bind network nodes to library gates to
|m|ze a given cost

d

== ,Pecompose circuit into trees
= Use dynamic programming to cover trees
— Cost function:
) MinArea(n,)

|;-,.:u1~ {L"J

— Traverse tree once from leaves to root




xtension for Low-Power Design

ISsipation estimate: _ - —

l~4.] —

Power = Sﬂ - lr u( f [\424)

]

(= |

jate partial power consumption of intermediate solutions
function:

pm\cr{‘. n) = power(g) + Z MinPower(n;) (4.25)

n,Eanputs (g)

= rrPower () Is minimum power cost for input pin n, of g
=+ powier (g) = 0.5 f Vpp? 3, C
* Formulation:

Minimize wi’ + (] - H")R such that 7 < Tmm
— R = Total Area, w gives their relative importance

— f=frequency, T = circuit delay




op-Level Mapping Algorithm

M tree leaves to root, compute trade-off curves for
8 chlng gates from library

Fr om root to leaves:
__ ~ # Select minimum-cost solution

'-i-—-
—I-l'_
—
il

e —

ﬁ‘ﬁeduces average power by 22% while keeping the
same delay

— Sometimes increases area as much as 39%
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;Circuit-LeveI Optimizations




Algorithm Components

d which gate to examine next
€ a set of transformations for the gate

: f-.u mpute overall power improvement due to
= transformations

_‘
—
__.—-

4 Update the circuit after each transformation




“"Gate Delay Model

revery input terminal |, and output terminal O, of
1y gate:
() - fanout load mdependent delay (intrinsic)
7(G) additional delay per unit fanout load

gate propagatlon delay from input to output:
T (G) + R, (G)C,(G)

a——

2 Normallze all actlvmes d, by dividing them by clock
activity (2f)

. Probab|I|ty of rising or falling transition at y




' CMOS Gate Usage

' 1N n N aYalalalallaTe VYA

¥y of NAND/NOR to INVERTER delay lessens in
D Sub-micron technology

=Series transistor connection V. and Vs Smaller than
== {hat for inverter transistor

S —
e R

=

_;-:-'_'._’*fh?:ourages wider use of complex CMOS gates
* |mportant to order series transistors correctly

— Delay varies by 20%
— Power varies by 10%




MOS Gate Power Consumption
[FSeries-connected P |

nsistors, signal with

er supply rail

'

-

Given two signals A4 and B that are connected to the two equivalent Y

inputs x, and x, of the gate in Figure 4.27, if .4 has much longer signal
activity than B then 4 should be connected to x, and B to x,. This :
results in lower power consumption. X, _J X 2 'J
‘—‘J,' = C -
| . _
capacitance at the gate output. For example, when the input to the gate in
Figure 427 is (x, = |, x, = 1, x, = 1), there may be a rising transition at z, X5 —-—
though y remains at 0. On the other hand, when the inputis x, = 1, x, =0, ane | B
x, =1, there is a falling transition at both z, and y. Therefore, internal |

u,‘"‘ - V"ﬁf Cydr + Zcz,dz,-




alculating Transition Probability

T

——

| 4

N finAd I

ird to determine prior state of internal circuit nodes

"me that when state cannot be determined, a transition
_ urred (upper power limit)
accurate bound: Observe that # conducting paths from
== | ode to VV,; must change from 0 to > 0 followed by similar change
— — In# conducting paths to V,

e = =

* Use # conducting paths that is smaller

t
p‘i'ydl lfpz Vaa = pz v

AR T

p. v otherwise
— Use serial-parallel graph edge reduction techniques




Transistor Reordering

now.delay of longest paths through each gate
[from static timing analyzer
;::%-5 (for NAND or NOR) connect latest arriving
gnal to input with smallest delay
| J' Break gate inputs into permutable sets and swap inputs

= Hard to compute which input order is best - can afford
to enumerate all possible orderings and try them
* Compute prob. (signal is switching while all other signals in

permutable set are on) — gives maximum internal node C
charging / discharging




T

" Equivalent pin ordering

e Change the input connection based on the signal
probability and signal activity

s Suppose that B is high and A is switching from low to high

<l pol N
VDD VDD
= \ E 3 5 ko
~ I T | CIJ_UT
. F IG-DLr. 4 F Il:'|-|:uul
F_%c.' F_%:."

Charges in C,;; and C,; are discharged Charges in C,; are discharged




Optimization Algorithm

—: circuit perform‘énce goal (do forwards and then

cm——

-
A1 (AN

g backwards traversal:
a gate delay is larger than specified delay, reorder inputs to
decrease delay
= End up with valid backwards delays for gates, but not valid
_;-forward delays
-—!‘?epeat forward traversal If input reordering was done

— Continue reordering inputs if gate path delay specification is
exceeded

* Continue alternating forward/backwards traversals until no
more reorderings happen, then proceed to power minimization




“Power Minimization

alternating forward and backward traversals

ange: Determine delay increase for input order
spondlng to least estimated power dissipation

i f increase less than available path slack, reorder inputs

_ allable slack: difference between:
' =~ Larger of maximum acceptable delay and longest path delay
— —2 - Delay of longest path through gate

— Results on MCNC benchmarks - reduced power by 7 to 8 %,
with no critical path delay increase, and very little area
penalty




~Zero Slack Algorithm
I e P R = i S B

rima 1
E‘lpl.lt o - 1 r 3 outpLt

B o ¥ ' nos oy

al

2
e 1
= Amivaltime in forward direction from primary input to primary output.
——% Choose Maximum arrival time so that all the Inputs are reaching the gate. So the
~gate-generate output.
* Required time in backward direction from primary output to primary input.

* Choose Minimum required time — how fast the output from gate reach the input
of next gate. So that signal is propagated to next level.

Slack= Difference between Maximum arrival time- Minimum required time




Zero Slack Algorithm

X

nos

_I?Dmr}_,_n*mw

3

output

citical path

-

k

o - [

Ao

Y

FA0s
L

Z

033 I N
[>| 1/45 2—); I3 z_f 1
‘\ \arﬁ\al-f’requiredﬁslack

gate delay

FIGURE 6: The zero-slack algorithm.
(a) The circuit with no net delays.




| Zero Slack Algorithm

000 '-5ﬂ~.5-ﬂ:} 440 D”m 10100 &
4|>°— ‘ _j ;—
mﬂ"‘? 14031 2405 | 1+ |5 ETPT
S une 1.51 50 ! }fﬂlui""
= 1?:.5 —E:.s o 2*°m_4+“

C_ o000 _7° ' L
tg‘mg‘,{ 64 2+0 1 +0

1415 \ 2413
\ amalrequiredflack
gate delay + net delay

FIGURE 6: The zero-slack algorithm.

(b) The zero-slack algorithm adds net delays (at the
outputs of each gate, equivalent to increasing the gate
delay) to reduce the slack times to zero.
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9 For given logic function and activity:

Signal with highest activity — closest to output
to reduce charging/discharging internal nodes




aﬁsitldn"Probabilities for CMOS Gates

I
- —

—

with same input signal probability:

_]_e of NOR2 gate PR =12
A B Out Pg—y = 1/2
-.;.:-: 1 O
== :_:d 1 0 Pout=o = 3/4
éi‘{{l__ 0 0 Pout=1 = 1/4
0 0) 1 Py

@ Cett = Pooy *CL = 3/16 * C,

100



ansition Probabilities cont’d

and B with different input sighal probability:
and Py : Probability that input i
: Probability that output is 1

-';hing activity in CMQOS circuits: P, ., = Py * P,
_~2-|nput NOR: P; = (1-P,)(1-Py)
US Po1 = (1-P1)*P; = [1-(1-Po)(1-Pg)]*[(1-Pa)1[1-Pg]

= *
I:)0—>1 o I:)out=0 I:)out=1

(1-(1-Pa(1-Pg))*(1-Py(1-Pg)

(1-Pa)(1-Pg)*(1-(1-Py(1-Pg))

PAPB* (l B PAPB)

(l - PAPB) * PAPB

(1 - (Py+ Pg- 2P,\Pg)) * (P5+ Pg- 2P,Pg)




~Logic Restructuring

restructuring: changing the topology of a logic
0 reduce transitions

BREGE— Py * P =(1-P.Py) * PPy

B (1.0.25)*0.25 = 3/16 0.5
= \ W 7/64 = 0.109 05B — fers

. 15/256 0.5 F
: = - 4 = |

= C
0.5 0.5D z
3/16 = 0.188

= Chain implementation has a lower overall switching activity than tree
Implementation for random inputs

= BUT: Ignores glitching effects

C—
o

0

Source: Timmernann, 2007




~“Input Ordering -

20.5X0.2)*(0.5x0.2)=0.09
. 0.2x0.1)*(0.2x0.1)=0.0196

}F . A

ShS

Beneficial: postponing introduction of signals with a high
transition rate (signals with signal probability close to 0.5)
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ransistor Resizing Methods

Nag & Roy. resized transistors on critical paths to
‘power and shorten delay

transistors speed up critical path and reduce power
| uSe you get sharper edges, and therefore less short-circuit
wer dissipation
— a—PenaIty larger transistors increase node C, which can increase
.::1-_ — delay and power
= — Increased drive for present block, and greater transition time for

preceding block (due to larger load C,) may increase present
block short-circuit current

— Simulated annealing algorithm tries to optimize gates on N most
critical paths




ransistor Sizing for Power Minimization

— —
—

m“ﬁm—-a— g

To keep
performance

Source: Timmernann, 2007
Micro transductors ‘08,

Low Power




“Transistor Sizing

um transistor sizing

I

=N
raf Er NCrer
I cp = Cniriug + Ejl.lﬂm

NORMALLIZED ENERGY

3 1
N, WL S IZING FACTOR

e The first stage is driving the gate capacitance of the second and
the parasitic capacitance
® input gate capacitance of both stages is given by NCref, where

Cref represents the gate capacitance of a MOS device with the
smallest allowable (W/L)




Transistor Sizing

hen there is no parasitic capacitance contribution (i.e., a = 0), the
: arly with resp 0 N and the solution of utilizing
es with the smallest (W/L) ratios results in the lowest power.

;a h values of a, when parasitic capacitances begin to dominate over

e gate capacitances, the power decreases temporarily with increasing
dev lce Sizes and then starts to increase, resulting in a optimal value for
he Initial decrease in supply voltage achieved from the reduction in

;g'ﬂf :elelays more than compensates the increase in capacitance due to
- Increasing N.

* _after some point the increase in capacitance dominates the achievable
reduction in voltage, since the incremental speed increase with
transistor sizing is very small

Minimum sized devices should be used when the total load capacitance
IS not dominated by the interconnect
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Summary

gic-level multi-level logic optimizatioﬁ IS effective

& J-

odified MIS algorithm
_ii'c-level Technology mapping
'Tree -covering algorithm is effective
CII‘CUI'[ level operations are effective

— Transistor input reordering
— Transistor resizing

— --|.
=

- -_——
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—
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—
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Arithmetic equation:
2c+s=a+b
Logic equation:

s = adb
C: = :ab
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FA Cell
a1b1dllcls|  Arithmetic equation:
T 0| 0|0)0]|O
d
‘ ‘ ‘ olofJ1f[o]1 de+s=a+b+d
oj1|ojo|1
FA 0(1(1(1|0 L ogic equation:
] [ 110|001
¢ < i ? I::I.} 1 E 5 = = EB b $ d
Afladick, avenl FA i EEE Jousaks

There many implementations of
the FA cell

- . " - i
TR 194 TEE 1S S0 I M
i
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Example of Low-Power FA Cell

10-transistor solution! (some output signals are weak signals):

O

o

£

7L

—

T H

ﬂﬁ[
i

o

A[B[D[ C]S
O[O[O] OO
olo|1 01
0[1[0 (0,1
o111 0
1(0]0[0.] 1L
AIEAE™E
1|10 1] 0
EEREAE™E”

H. T. Bui, ¥. Wang and Y. Jiang. Design and analysis of low-power 10-transistor
full adders using novel XOR—-XNOR gates. |EEE Trans. Ca5, jan. 2002.




ddition of Binary Numbers

| Adder. The full adder is the fundamental building block
ost arithmetic CIFCulIts:

a b
!
C Full C..

B ~——— =

Adder

lsi

The sum and carry outputs are described as:

Oklobdzija 2004 Computer Arithmetic




w

|
!

OO0 |- O
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~1

Oklobdzija 2004 Computer Arithiriétic




ull-Adder Implementation

\dde operations is defined by equations:
Si = &, 4‘ b,

=
— [ ) s

Eqi!

ry-Propagate:
nd Carry-Generate g,

One-bit adder could be
Implemented as shown

Oklobdzija 2004 Computer Arithmetic



High-Speed Addltlon -

One-bit adder could be
Implemented more efficiently '

because MUX is faster

Oklobdzija 2004 Computer Arithmetic




Array Multipliers with Lower Power Consumption

Fig. 26.5 An array multiplier with gated FA cells.




Arithmetic
Circuit

Arithmetic
Circuit

Arithmetic
Circuit

“New and Emerging Methods

Local
Control

Local
Control

Local
Control

—

Dual-rail data encoding with
. dransition signaling:

Two wires per signal

Transition on wire 0 (1) indicates
the arrival of 0 (1)

Dual-rail design does increase
the wiring density, but it offers
the advantage of complete
Insensitivity to delays

Part of an asynchronous chain of
computations.
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Ultlmate In Low-Power De3|gn

"‘+"""..'-...

~ Reversible binary full
| adder built

= of 5 Fredkin gates,
= with a single Feynman

gate used to fan out
the input B. The label
“G” denotes “garbage.”

(d) Peres gate

Bee=4\

Q=AB@®AC
Respeern AR

P=A
Q=A®B
R=AB®C

I R

S

Some reversible
logic gates.




Problem 3.1 (5 points) And-Or-Invert Gates: And-Or-Invert (AOI) gates are often
included in standard cell libraries to reduce the area of synthesized combinational logic
because they implement common logic functions with fewer devices. Draw a static CMOS
gate which implements the AOI function Y = A- (B+ C + D).

Problem 3.2 (10 points) Activity Factors for And-Or-Invert Gates: Write down the
truth table for the AOI gate for Y. Determine the transition activities ap—; of the output
assuming the inputs are independent and uniformly distributed.

Problem 3.3 (25 points) And-Or-Invert Gates versus Basic Gates: (1) Draw the
simplest possible implementation of the logic function Y using 2-input basic gates (NOR,
OR, NAND, AND, XOR). (2) Assuming the inputs are independent and their probabilities
of equaling 1 are 0.5, derive the activity factors for the outputs and any internal nodes of the
2-input gate implementation based on the transition probabilities formulas from Lecture 3.
Assume the self-loading capacitance of a gate is the same as its input capacitance (i.e., both
are equal to some unit capacitance C,), and all gates are equivalent in terms of capacitance.
(3) How much more efficient is the AOI implementation than the 2-input gate implementation
in terms of effective capacitance (write answer in units of C,)?




A4

Figure 4: Y-output AOI gate pulldown network. Figure 5: Y-output AOI gate pullup network.
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Table 3: Truth table for function Y = A- (B + C + D).

Given the logic equation for Y, computing the transition activity factor ap—i is easy once
the truth table for output Y is determined. This is shown in Table 3. Using the equation
from lecture, the transition probability is:

i 9 6.3

Y Y = . —=
o — MoV @0—1(Y) = 75 > 75 = 356

are the numbers of )’s and 1’s in the output column of the truth table.
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' Figure 6: Y-output two input gate implementation.

The AOI gate implementation for the Y equation has only approximately 30% of the
switched capacitance of the two input gate implementation. AOI gates are generally quite
efficient for implementing miscellaneous logic equations, hence they are often included in
standard cell libraries designed for synthesis (10 points).



3.3

(1 —PD)U —Pc)[l - [1 —PD)(l —Pc)]
— (1-05)(1=-0.5)[1—=0.5-0.5]

= (1-pB)(1 —pz)[1 - (1—-pB)(1—pz)]
— (1—05)(1—0.75)[1 — 0.5 0.25]

= i = 0.1094
64

— [1- (= pp)(1—po)] =1 - & = 0875

= papx(1l — papx)
— 0.5-0.875(1 — 0.5 - 0.875)

63
= = 0:2401
256




From the transition activity factors calculated earlier, the effective capacitances for the
Y AOI gate is Cypy(Y) = ag_1Cy = %Cﬂ,. The effective capacitances are 0.241C',. This is
based on the self-loading or output capacitances of the gates equalling C,,. The two input
gates have to include the activity and the capacitances of the intermediate nodes as well as

the output. These are summarized below:

(::FS..,_ m { }- ] = Cp—1 ( Z ) {2(_1“) - (¥n—1 (_Xr J (2 (__fu J e 3/ 0—1 (}r ) (—fi_ L

0.8399C,




