
14MERC0 RELIABILITY ENGINEERING 
Category  L T P Credit 

PE 3 0 0 3     
Preamble 

 

Reliability engineering is engineering that emphasizes dependability in the lifecycle 
management of a product. Dependability, or reliability, describes the ability of a system or 
component to function under stated conditions for a specified period of time.  
The students can able to identify and manage asset reliability risks that could adversely 
affect plant or business operations.  

 

Prerequisite 
 

 14ME310 -  Statistical techniques
Course Outcomes 
At the end of the course, the students will be able to:  
CO 1. Explain the basic concepts of Reliability Engineering and its Understand 

 measures.  

CO 2. Predict the Reliability at system level using various models. Apply 

CO 3. Design the test plan to meet the reliability Requirements. Apply 

CO 4. Predict and estimate the reliability from failure data. Apply 

CO 5. Develop and implement a successful Reliability programme. Apply  
 

Mapping with Programme Outcomes  

 COs PO1 PO2  PO3  PO4 PO5 PO6 PO7 PO8 PO9  PO10 PO11 PO12  
                      

 CO1. S S  -   S M - - - -  - - -  
                      

 CO2. S S  -   S S - - - -  - - M  
                      

 CO3. S S  S  S S - - - -  - - M  
                      

 CO4. S S  -   S M - - - -  - - M  
                      

 CO5. S S  S  S M - - - -  - - M  
                     

 S- Strong; M-Medium; L-Low               

                   
 Assessment Pattern                  
                  

 
Bloom‟s Category 

   Continuous Assessment Tests   
Terminal Examination 

 
    

1 
  

2 
  

3 
   

                   

 Remember      20   20   20     20   

 Understand      40   40   40     40   

 Apply       40   40   40     40   

 Analyse      -   -   -     -   

 Evaluate      -   -   -     -   

 Create       -   -   -     -    
 

Course Level Assessment Questions 

 

Course Outcome 1 (CO1):  
 Write the concept of Reliability 
 Define the term “Reliability management 
 Explain the term “Bath Tub Curve 

 

Course Outcome 2 (CO2):  
 State and explain the possible causes of low reliability of modern engineering systems  
 Compare the availability of the following two unit systems with repair facilities: a)Series 
system with one repair facility, b)Series system with two repair facilities 

 

 

Passed in Board of Studies Meeting held on 26.11.2016 Approved in 53rd Academic Council Meeting held on 22.12.2016 



B.E. Degree (Mechanical Engineering) - 2014-15 

 

Course Outcome 3 (CO3):  
 Calculate a) the expectation b)the second moment about the origin and c)the variance for 
the following probability distributions. 
 
  X = 8   12  16 20 24        

  p(X) = 1/8  1/6  3/8 1/4 1/12 
Fault –tree diagrams for the systems shown 2.   Draw              

in the following figures:                
                   

a) 
           

b) 
 

A 
   

               

   

A 
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Course Outcome 4 (CO4):  
 What is failure data analysis  
 What are the different techniques of risk analysis? 
 How do you assess the design process in safety 
 

Course Outcome 5 (CO5):  
 Explain the various risk measurement systems in modern industrial scenario  
 Explain about various risk reduction resources in a chemical industry 
 How the risk assessment will support the industrial safety.  
 

Concept Map  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Syllabus 
 
Introduction :Basic definitions: Reliability, Availability, Serviceability, Failure rate, 
ReliabilityMathematics, Failure distribution - constant failure rate model, Time dependent 
failure rate models and its types, Bath tub curve. case study or Videos on Human Reliability, 
Software Reliability.  
System Reliability: Reliability Block Diagram - Series, Parallel & combined series-
parallelconfigurations; redundant-active and passive types, Failure Mode, Effects and 
Criticality 
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Analysis (FMECA), Failure Reporting, Analysis and Corrective Action System (FRACAS), 
Fault Tree Analysis (FTA), System state analysis-Markov Model, Availability, Downtime. 
Reliability testing: Failures and types of failures; Intrinsic & extrinsic failures; 
Failurecascade; Failure mode; Failure rate, MTTF, MTBF, Accelerated life testing (ALT) - 
Qualitative ALT, Quantitative ALT & its types, AF, Samples  
Reliability estimation and life Prediction: Types of Failure data - Data 
censoring,Parametric and Non Parametric distribution, Probability density function, 
Exponential, Normal, lognormal &weibull distributions, weibull Goodness of fit distributions, 
Electronics reliability prediction-parts count, parts stress method, MIL standard, Naval 
Surface Warfare Center (NSWC).  
Reliability Management: Design for Reliability, Relationship between Reliability and 
safetyfactor, Stress-Strength interference theory, Reliability growth testing, Reliability 
centered maintenance (RCM), Spares planning.  
 

Text Book 

 

1. Kailash C. Kapur, Michael Pecht, ReliabilityEngineering, John Wiley & Sons, 2014.  
 

Reference Books  
 Srinath L.S, “Reliability Engineering”, Affiliated East-West Press Pvt Ltd, New Delhi, 
1998.  
 Modarres, “Reliability and Risk analysis”, Marshal Dekker Inc.1993.  
 John Davidson, “The Reliability of Mechanical system” published by the Institution 

of Mechanical Engineers, London, 1988.  
 Smith C.O. “Introduction to Reliability in Design”, McGraw Hill, London, 1976.  
 Charles E. Ebeling, “An introduction to Reliability and Maintainability engineering”, 

TMH, 2004  
 Roy Billington and Ronald N. Allan, “Reliability Evaluation of Engineering Systems”, 

Springer, 2007.  
 Handbook of Reliability Prediction Procedures for Mechanical Equipment Logistics 

Technology Support CARDEROCKDIV, NSWC-11 May 2011, West Bethesda, Maryland 
20817-5700.  

 

Course Contents and Lecture Schedule 

 

Module    
Topic 

 
No. of Lectures 

No.     

       

1 INTRODUCTION     
      

1.1 Basic definitions: Reliability, Availability, 1 
 

Serviceability, Failure rate 
  

    

1.2 Reliability  Mathematics, Failure distribution- 2 
 

constant failure rate model 
  

    

1.3 Time dependent failure rate models and its types, 1 
 

Bath tub curve 
   

     

1.4 Case  study or  videos on  Human Reliability, 1 
 

Software Reliability 
   

     

2. SYSTEM RELIABILITY    
     

2.1 RBD-Series, Parallel &  combined  series-parallel 2 
 

configurations 
   

     

2.2 Redundant-active and passive types  2 
      

2.3 FMECA, FRACAS, Fault tree  analysis  (FTA), 1 
 

System state analysis 
   

     

2.4 Markov Model, Availability, Downtime  2 
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 3  RELIABILITY TESTING   
       

 3.1  Failures and types of failures; Intrinsic & extrinsic  2  
   

failures 
   

       

 3.2  Failure cascade; Failure mode; Failure rate, MTTF,  2  
   

MTBF 
   

       

 3.3  Accelerated life testing (ALT) - Qualitative ALT  1  
       

 3.4  Quantitative ALT & its types, AF, Samples  2  
       

 4  RELIABILITY ESTIMATION AND LIFE PREDICTION   
      

 4.1  Types of Failure data - Data censoring  1  
       

 4.2  Parametric and Non Parametric distribution  2  
        

 4.3  Probability density function, Exponential, Normal,  2  
   

lognormal &weibull distributions 
  

      

 4.4  Weibull Goodness of fit distributions  2  
        

 4.5  Electronics reliability prediction-parts count, parts  2  
   

stress method 
  

      

 4.6  MIL standard, NSWC  1  
       

 5  RELIABILITY MANAGEMENT   
      

 5.1  Design for Reliability  2  
       

 5.2  Relationship between Reliability and safety factor  1  
       

 5.3  Stress-Strength interference theory  2  
       

 5.4  Reliability growth testing  1  
       

 5.5  RCM, Spares planning  1  
        

    TOTAL  36  
       

     
Course Designers:     

1. S. Karthikeyan skarthikeyanlme@tce.edu   
 



Accelerated Life Testing? 

 

 Traditional life data analysis involves analyzing times-to-failure data obtained under 

normal operating conditions in order to quantify the life characteristics of a product, system or 

component. For many reasons, obtaining such life data (or times-to-failure data) may be very 

difficult or impossible. The reasons for this difficulty can include the long life times of today's 

products, the small time period between design and release, and the challenge of testing products 

that are used continuously under normal conditions. Given these difficulties and the need to 

observe failures of products to better understand their failure modes and life characteristics, 

reliability practitioners have attempted to devise methods to force these products to fail more 

quickly than they would under normal use conditions. In other words, they have attempted to 

accelerate their failures. Over the years, the phrase accelerated life testing has been used to 

describe all such practices. 

As we use the phrase in this reference, accelerated life testing involves the acceleration of 

failures with the single purpose of quantifying the life characteristics of the product at normal 

use conditions. More specifically, accelerated life testing can be divided into two 

areas: qualitative accelerated testing and quantitative accelerated life testing. In qualitative 

accelerated testing, the engineer is mostly interested in identifying failures and failure modes 

without attempting to make any predictions as to the product's life under normal use conditions. 

In quantitative accelerated life testing, the engineer is interested in predicting the life of the 

product (or more specifically, life characteristics such as MTTF, B(10) life, etc.) at normal use 

conditions, from data obtained in an accelerated life test. 

Qualitative vs. Quantitative Accelerated Tests 

 

 

 Each type of test that has been called an accelerated test provides different information 

about the product and its failure mechanisms. These tests can be divided into two types: 

qualitative tests (HALT, HAST, torture tests, shake and bake tests, etc.) and quantitative 

accelerated life tests. This reference addresses and quantifies the models and procedures 

associated with quantitative accelerated life tests (QALT).  

 



Qualitative Accelerated Testing 

Qualitative tests are tests which yield failure information (or failure modes) only. They have 

been referred to by many names including: 

 Elephant tests 

 Torture tests 

 HALT (Highly accelerated life testing) 

 HAST (Highly accelerated stress test) 

 Shake & bake tests 

 

  Qualitative tests are performed on small samples with the specimens subjected to 

a single severe level of stress, to multiple stresses, or to a time-varying stress (e.g., stress 

cycling, cold to hot, etc.). If the specimen survives, it passes the test. Otherwise, appropriate 

actions will be taken to improve the product's design in order to eliminate the cause(s) of 

failure. Qualitative tests are used primarily to reveal probable failure modes. However, if 

not designed properly, they may cause the product to fail due to modes that would never 

have been encountered in real life. A good qualitative test is one that quickly reveals those 

failure modes that will occur during the life of the product under normal use conditions. In 

general, qualitative tests are not designed to yield life data that can be used in subsequent 



quantitative accelerated life data analysis as described in this reference. In general, 

qualitative tests do not quantify the life (or reliability) characteristics of the product under 

normal use conditions, however they provide valuable information as to the types and levels 

of stresses one may wish to employ during a subsequent quantitative test. 

Benefits and Drawbacks of Qualitative Tests 

 Benefits: 

 Increase reliability by revealing probable failure modes. 

 Provide valuable feedback in designing quantitative tests, and in many cases are a 

precursor to a quantitative test. 

 Drawbacks: 

 Do not quantify the reliability of the product at normal use conditions. 

Quantitative Accelerated Life Testing 

 

Quantitative accelerated life testing (QALT), unlike the qualitative testing methods 

described previously, consists of tests designed to quantify the life characteristics of 

the product, component or system under normal use conditions, and thereby provide 

reliability information. Reliability information can include the probability of failure of 

the product under use conditions, mean life under use conditions, and projected returns 

and warranty costs. It can also be used to assist in the performance of risk assessments, 

design comparisons, etc.  



Quantitative accelerated life testing can take the form of usage rate acceleration or 

overstress acceleration. Both accelerated life test methods are described next. Because 

usage rate acceleration test data can be analyzed with typical life data analysis 

methods, the overstress acceleration method is the testing method relevant to both 

ALTA and the remainder of this reference.  

Quantitative Accelerated Life Tests 

For all life tests, some time-to-failure information (or time-to-an-event) for the product 

is required since the failure of the product is the event we want to understand. In other 

words, if we wish to understand, measure and predict any event, we must observe how 

that event occurs! 

Most products, components or systems are expected to perform their functions 

successfully for long periods of time (often years). Obviously, for a company to remain 

competitive, the time required to obtain times-to-failure data must be considerably less 

than the expected life of the product. Two methods of acceleration, usage rate 

acceleration and overstress acceleration, have been devised to obtain times-to-failure 

data at an accelerated pace. For products that do not operate continuously, one can 

accelerate the time it takes to induce/observe failures by continuously testing these 

products. This is called usage rate acceleration. For products for which usage rate 

acceleration is impractical, one can apply stress(es) at levels which exceed the levels 

that a product will encounter under normal use conditions and use the times-to-failure 

data obtained in this manner to extrapolate to use conditions. This is called overstress 

acceleration. 

Usage Rate Acceleration 

For products which do not operate continuously under normal conditions, if the test 

units are operated continuously, failures are encountered earlier than if the units were 

tested at normal usage. For example, a microwave oven operates for small periods of 

time every day. One can accelerate a test on microwave ovens by operating them more 

frequently until failure. The same could be said of washers. If we assume an average 

washer use of 6 hours a week, one could conceivably reduce the testing time 28-fold 

by testing these washers continuously. 



Data obtained through usage acceleration can be analyzed with the same methods used 

to analyze regular times-to-failure data.  

The limitation of usage rate acceleration arises when products, such as computer 

servers and peripherals, maintain a very high or even continuous usage. In such cases, usage 

acceleration, even though desirable, is not a feasible alternative. In these cases the practitioner 

must stimulate the product to fail, usually through the application of stress(es). This method of 

accelerated life testing is called overstress acceleration and is described next. 

Overstress Acceleration 

 For products with very high or continuous usage, the accelerated life testing practitioner 

must stimulate the product to fail in a life test. This is accomplished by applying stress(es) that 

exceed the stress(es) that a product will encounter under normal use conditions. The times-to-

failure data obtained under these conditions are then used to extrapolate to use conditions. 

Accelerated life tests can be performed at high or low temperature, humidity, voltage, pressure, 

vibration, etc. in order to accelerate or stimulate the failure mechanisms. They can also be 

performed at a combination of these stresses. 

Stresses & Stress Levels 

Accelerated life test stresses and stress levels should be chosen so that they accelerate the failure 

modes under consideration but do not introduce failure modes that would never occur under use 

conditions. Normally, these stress levels will fall outside the product specification limits but 

inside the design limits as illustrated next: 

 

 This choice of stresses/stress levels and of the process of setting up the experiment is 

extremely important. Consult your design engineer(s) and material scientist(s) to determine what 



stimuli (stresses) are appropriate as well as to identify the appropriate limits (or stress levels). If 

these stresses or limits are unknown, qualitative tests should be performed in order to ascertain 

the appropriate stress(es) and stress levels. Proper use of design of experiments (DOE) 

methodology is also crucial at this step. In addition to proper stress selection, the application of 

the stresses must be accomplished in some logical, controlled and quantifiable fashion. Accurate 

data on the stresses applied, as well as the observed behavior of the test specimens, must be 

maintained. 

 Clearly, as the stress used in an accelerated test becomes higher, the required test duration 

decreases (because failures will occur more quickly). However, as the stress level moves farther 

away from the use conditions, the uncertainty in the extrapolation increases. Confidence intervals 

provide a measure of this uncertainty in extrapolation.  

Understanding Quantitative Accelerated Life Data Analysis 

In typical life data analysis one determines, through the use of statistical distributions, a life 

distribution that describes the times-to-failure of a product. Statistically speaking, one wishes to 

determine the use level probability density function, or pdf, of the times-to-failure. Appendix A 

of this reference presents these statistical concepts and provides a basic statistical background as 

it applies to life data analysis. 

Once this pdf has been obtained, all other desired reliability results can be easily determined, 

including: 

 Percentage failing under warranty. 

 Risk assessment. 

 Design comparison. 

 Wear-out period (product performance degradation). 

In typical life data analysis, this use level probability density function, or pdf, of the times-to-

failure can be easily determined using regular times-to-failure/suspension data and an underlying 

distribution such as the Weibull, exponential or lognormal distribution. In accelerated life data 

analysis, however, we face the challenge of determining the use level pdf from accelerated life 

test data, rather than from times-to-failure data obtained under use conditions. To accomplish 

this, we must develop a method that allows us to extrapolate from data collected at accelerated 

conditions to arrive at an estimation of use level characteristics. 



 

Looking at a Single Constant Stress Accelerated Life Test 

To understand the process involved with extrapolating from overstress test data to use level 

conditions, let's look closely at a simple accelerated life test. For simplicity we will assume that 

the product was tested under a single stress at a single constant stress level. We will further 

assume that times-to-failure data have been obtained at this stress level. The times-to-failure at 

this stress level can then be easily analyzed using an underlying life distribution. A pdf of the 

times-to-failure of the product can be obtained at that single stress level using traditional 

approaches. This pdf, the overstress pdf, can likewise be used to make predictions and estimates 

of life measures of interest at that particular stress level. The objective in an accelerated life test, 

however, is not to obtain predictions and estimates at the particular elevated stress level at which 

the units were tested, but to obtain these measures at another stress level, the use stress level. 



 

To accomplish this objective, we must devise a method to traverse the path from the 

overstress pdf to extrapolate a use level pdf. The next figure illustrates a typical behavior of 

the pdf at the high stress (or overstress level) and the pdf at the use stress level. 



 

To further simplify the scenario, let's assume that the pdf for the product at any stress level can 

be described by a single point. The next figure illustrates such a simplification where we need to 

determine a way to project (or map) this single point from the high stress to the use stress. 

 

Obviously, there are infinite ways to map a particular point from the high stress level to the use 

stress level. We will assume that there is some model (or a function) that maps our point from 

the high stress level to the use stress level. This model or function can be described 



mathematically and can be as simple as the equation for a line. The next figure demonstrates 

some simple models or relationships. 

 

Even when a model is assumed (e.g., linear, exponential, etc.), the mapping possibilities are still 

infinite since they depend on the parameters of the chosen model or relationship. For example, a 

simple linear model would generate different mappings for each slope value because we can 

draw an infinite number of lines through a point. If we tested specimens of our product at two 

different stress levels, we could begin to fit the model to the data. Clearly, the more points we 

have, the better off we are in correctly mapping this particular point or fitting the model to our 

data. 

 



The above figure illustrates that you need a minimum of two higher stress levels to properly map 

the function to a use stress level. 

Life Distributions and Life-Stress Models 

The analysis of accelerated life test data consists of (1) an underlying life distribution that 

describes the product at different stress levels and (2) a life-stress relationship (or model) that 

quantifies the manner in which the life distribution changes across different stress levels. These 

elements of analysis are graphically shown next: 

 

The combination of both an underlying life distribution and a life-stress model can be best seen 

in the next figure where a pdf is plotted against both time and stress. 



 

The assumed underlying life distribution can be any life distribution. The most commonly used 

life distributions include the Weibull, exponential and lognormal distribution. Along with the life 

distribution, a life-stress relationship is also used. These life-stress relationships have been 

empirically derived and fitted to data. An overview of some of these life-stress relationships is 

presented in the Analysis Method subchapter. 

Analysis Method 

With our current understanding of the principles behind accelerated life testing analysis, we will 

continue with a discussion of the steps involved in analyzing life data collected from accelerated 

life tests like those described in the Quantitative Accelerated Life Tests section. 

Select a Life Distribution 

The first step in performing an accelerated life data analysis is to choose an appropriate life 

distribution. Although it is rarely appropriate, the exponential distribution has in the past been 

widely used as the underlying life distribution because of its simplicity. The Weibull and 

lognormal distributions, which require more involved calculations, are more appropriate for most 

uses. The underlying life distributions available in ALTA are presented in detail in 

the Distributions Used in Accelerated Testing chapter of this reference. 

Select a Life-Stress Relationship 

http://reliawiki.com/index.php/Distributions_Used_in_Accelerated_Testing


After you have selected an underlying life distribution appropriate to your data, the second step 

is to select (or create) a model that describes a characteristic point or a life characteristic of the 

distribution from one stress level to another. 

 

The life characteristic can be any life measure such as the mean, median, R(x), F(x), etc. This life 

characteristic is expressed as a function of stress. Depending on the assumed underlying life 

distribution, different life characteristics are considered. Typical life characteristics for some 

distributions are shown in the next table. 

Distribution Parameters Life Characteristic 

Weibull *,  Scale parameter,  

Exponential 
 

Mean life ( ) 

Lognormal , * Median,  

*Usually assumed constant 

For example, when considering the Weibull distribution, the scale parameter, , is chosen to be 

the life characteristic that is stress dependent, while  is assumed to remain constant across 

different stress levels. A life-stress relationship is then assigned to . Eight common life-stress 

models are presented later in this reference. Click a topic to go directly to that page. 

 Arrhenius Relationship 

http://reliawiki.com/index.php/Arrhenius_Relationship


 Eyring Relationship 

 Inverse Power Law Relationship 

 Temperature-Humidity Relationship 

 Temperature Non-Thermal Relationship 

 Multivariable Relationships: General Log-Linear and Proportional Hazards 

 Time-Varying Stress Models 

Parameter Estimation 

Once you have selected an underlying life distribution and life-stress relationship model to fit 

your accelerated test data, the next step is to select a method by which to perform parameter 

estimation. Simply put, parameter estimation involves fitting a model to the data and solving for 

the parameters that describe that model. In our case, the model is a combination of the life 

distribution and the life-stress relationship (model). The task of parameter estimation can vary 

from trivial (with ample data, a single constant stress, a simple distribution and simple model) to 

impossible. Available methods for estimating the parameters of a model include the graphical 

method, the least squares method and the maximum likelihood estimation method. Parameter 

estimation methods are presented in detail in Appendix B of this reference. Greater emphasis 

will be given to the MLE method because it provides a more robust solution, and is the one 

employed in ALTA. 

Derive Reliability Information 

Once the parameters of the underlying life distribution and life-stress relationship have been 

estimated, a variety of reliability information about the product can be derived such as: 

 Warranty time. 

 The instantaneous failure rate, which indicates the number of failures occurring per unit time. 

 The mean life which provides a measure of the average time of operation to failure. 

 B(X) life, which is the time by which X% of the units will fail. 

 etc. 

Stress Loading 

The discussion of accelerated life testing analysis thus far has included the assumption that the 

stress loads applied to units in an accelerated test have been constant with respect to time. In real 

life, however, different types of loads can be considered when performing an accelerated test. 

Accelerated life tests can be classified as constant stress, step stress, cycling stress, random 

http://reliawiki.com/index.php/Eyring_Relationship
http://reliawiki.com/index.php/Inverse_Power_Law_Relationship
http://reliawiki.com/index.php/Temperature-Humidity_Relationship
http://reliawiki.com/index.php/Temperature-NonThermal_Relationship
http://reliawiki.com/index.php/Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards
http://reliawiki.com/index.php/Time-Varying_Stress_Models
http://reliawiki.com/index.php/Appendix_B:_Parameter_Estimation


stress, etc. These types of loads are classified according to the dependency of the stress with 

respect to time. There are two possible stress loading schemes, loadings in which the stress is 

time-independent and loadings in which the stress is time-dependent. The mathematical 

treatment, models and assumptions vary depending on the relationship of stress to time. Both of 

these loading schemes are described next. 

Stress is Time-Independent (Constant Stress) 

When the stress is time-independent, the stress applied to a sample of units does not vary. In 

other words, if temperature is the thermal stress, each unit is tested under the same accelerated 

temperature, (e.g., 100° C), and data are recorded. This is the type of stress load that has been 

discussed so far. 

 

This type of stress loading has many advantages over time-dependent stress loadings. 

Specifically: 

 Most products are assumed to operate at a constant stress under normal use. 

 It is far easier to run a constant stress test (e.g., one in which the chamber is maintained at a 

single temperature). 

 It is far easier to quantify a constant stress test. 

 Models for data analysis exist, are widely publicized and are empirically verified. 

 Extrapolation from a well-executed constant stress test is more accurate than extrapolation from 

a time-dependent stress test. 

Stress is Time-Dependent 

When the stress is time-dependent, the product is subjected to a stress level that varies with time. 

Products subjected to time-dependent stress loadings will yield failures more quickly, and 

models that fit them are thought by many to be the "holy grail" of accelerated life testing. The 



cumulative damage model allows you to analyze data from accelerated life tests with time-

dependent stress profiles. 

The step-stress model, as discussed in [31], and the related ramp-stress model are typical cases of 

time-dependent stress tests. In these cases, the stress load remains constant for a period of time 

and then is stepped/ramped into a different stress level, where it remains constant for another 

time interval until it is stepped/ramped again. There are numerous variations of this concept. 

 

 

The same idea can be extended to include a stress as a continuous function of time. 

 

http://reliawiki.com/index.php/Appendix_E:_References


 

 

Summary of Accelerated Life Testing Analysis 

In summary, accelerated life testing analysis can be conducted on data collected from carefully 

designed quantitative accelerated life tests. Well-designed accelerated life tests will apply 

stress(es) at levels that exceed the stress level the product will encounter under normal use 

conditions in order to accelerate the failure modes that would occur under use conditions. An 

underlying life distribution (like the exponential, Weibull and lognormal lifetime distributions) 

can be chosen to fit the life data collected at each stress level to derive overstress pdfs for each 

stress level. A life-stress relationship (Arrhenius, Eyring, etc.) can then be chosen to quantify the 

path from the overstress pdfs in order to extrapolate a use level pdf. From the extrapolated use 

level pdf, a variety of functions can be derived, including reliability, failure rate, mean life, 

warranty time etc. 

 page 

  

 discussion 

  

 view source 

  

 history 

 Log in 

reliawiki.org 

 Home 

 About 

http://reliawiki.com/index.php/Introduction_to_Accelerated_Life_Testing
http://reliawiki.com/index.php?title=Talk:Introduction_to_Accelerated_Life_Testing&action=edit&redlink=1
http://reliawiki.com/index.php?title=Introduction_to_Accelerated_Life_Testing&action=edit
http://reliawiki.com/index.php?title=Introduction_to_Accelerated_Life_Testing&action=history
http://reliawiki.com/index.php?title=Special:UserLogin&returnto=Introduction_to_Accelerated_Life_Testing
http://reliawiki.com/index.php/Main_Page
http://reliawiki.com/index.php/About


 

 



 
RF #2003RM-100: page i               RF 

 
2003 Annual RELIABILITY and MAINTAINABILITY Symposium 

 
 
 
 
 
   
 
 
 
 

Understanding Accelerated Life-Testing Analysis 
 
 
 

 
Pantelis Vassiliou and Adamantios Mettas 

 
 
 
 
 
 
 
 
 
 
 

Pantelis Vassiliou 
ReliaSoft Corporation 

ReliaSoft Plaza 
115 South Sherwood Village Drive 

Tucson, AZ 85710 
Pantelis.Vassiliou@ReliaSoft.com 



 
RF #2003RM-100: page ii               RF 

 
Summary & Purpose 

 
Accelerated tests are becoming increasingly popular in today’s industry due to the need for obtaining life 

data quickly.  Life testing of products under higher stress levels without introducing additional failure 
modes can provide significant savings of both time and money.  Correct analysis of data gathered via such 
accelerated life testing will yield parameters and other information for the product’s life under use stress 
conditions.   

 
This is a brief introductory tutorial on this subject.  Its main purpose is to introduce the participant to 

some of the basic theories and methodologies of accelerated life testing data analysis.   
 
 
 

Pantelis Vassiliou and Adamantios Mettas 
 
Mr. Vassiliou directs and coordinates ReliaSoft's R&D efforts to deliver state of the art software tools for 

applying reliability engineering concepts and methodologies.  He is the original architect of ReliaSoft's 
Weibull++, a renowned expert and lecturer on Reliability Engineering and ReliaSoft's founder.  He is 
currently spearheading the development of new technologically advanced products and services.  In 
addition, he also consults, trains and lectures on reliability engineering topics to Fortune 1000 companies 
worldwide.  Mr. Vassiliou holds an MS degree in Reliability Engineering from the University of Arizona. 

 
Mr. Mettas is the Senior research scientist at ReliaSoft Corporation.  He fills a critical role in the 
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1. INTRODUCTION 

Traditional “Life Data Analysis” involves analyzing times-
to-failure data (of a product, system or component) obtained 
under “normal” operating conditions in order to quantify the 
life characteristics of the product, system or component.  In 
many situations, and for many reasons, such life data (or 
times-to-failure data) is very difficult, if not impossible, to 
obtain.  The reasons for this difficulty can include the long life 
times of today’s products, the small time period between 
design and release, and the challenge of testing products that 
are used continuously under normal conditions.  Given this 
difficulty, and the need to observe failures of products to 
better understand their failure modes and their life 
characteristics, reliability practitioners have attempted to 
devise methods to force these products to fail more quickly 
than they would under normal use conditions.  In other words, 
they have attempted to accelerate their failures.  Over the 
years, the term “Accelerated Life Testing” has been used to 
describe all such practices.  

A variety of methods, which serve different purposes, have 
been termed “Accelerated Life Testing.”  As we use the term 
in this tutorial, “Accelerated Life Testing” involves 
acceleration of failures with the single purpose of the 
“quantification of the life characteristics of the product at 
normal use conditions.”  This tutorial is solely concerned 
with this type of accelerated life testing.  To avoid confusion, 
the following section describes different types of tests that 
have been called “accelerated tests” and distinguishes between 
those that are addressed in this tutorial and those that are not. 

2. TYPES OF ACCELERATED TESTS 

Each type of test that has been called an accelerated test 
provides different information about the product and its failure 
mechanisms.  Generally, accelerated tests can be divided into 
three types:  Qualitative Tests (Torture Tests or Shake and 
Bake Tests), ESS and Burn-in and finally Quantitative 
Accelerated Life Tests.  This tutorial only addresses and 
quantifies some models and procedures associated with the 
last type, Quantitative Accelerated Life Tests. 

2.1 Qualitative Tests 
Qualitative Tests are tests that yield failure information (or 

failure modes) only.  They have been referred to by many 
names including: 

• Elephant Tests  
• Torture Tests  
• HALT (Highly Accelerated Life Testing) 
• Shake & Bake Tests  
Qualitative tests are performed on small samples with the 

specimens subjected to a single severe level of stress, to a 
number of stresses, or to a time-varying stress (i.e., stress 
cycling, cold to hot, etc.).  If the specimen survives, it passes 
the test.  Otherwise, appropriate actions will be taken to 
improve the product’s design in order to eliminate the cause(s) 
of failure.  Qualitative tests are used primarily to reveal 
probable failure modes.  However, if not designed properly, 
they may cause the product to fail due to modes that would 
have never been encountered in real life.  A good qualitative 

test is one that quickly reveals those failure modes that will 
occur during the life of the product under normal use 
conditions.  In general, qualitative tests are not designed to 
yield life data that can be used in subsequent analysis or for 
“Accelerated Life Test Analysis.”  In general, qualitative tests 
do not quantify the life (or reliability) characteristics of the 
product under normal use conditions. 

2.1.1 Benefits and Drawbacks of Qualitative Tests: 
Benefit: Increase reliability by revealing probable failure 

modes. 
Unanswered question: What is the reliability of the product 

at normal use conditions? 

2.2 ESS and Burn-In 
The second type of accelerated test consists of ESS and 

Burn-in testing.  ESS, Environmental Stress Screening, is a 
process involving the application of environmental stimuli to 
products (usually electronic or electromechanical products) on 
an accelerated basis.  The stimuli in an ESS test can include 
thermal cycling, random vibration, electrical stresses, etc.  The 
goal of ESS is to expose, identify and eliminate latent defects 
which cannot be detected by visual inspection or electrical 
testing but which will cause failures in the field.  ESS is 
performed on the entire population and does not involve 
sampling. 

Burn-in can be regarded as a special case of ESS.  
According to MIL-STD-883C, Burn-in is a test performed for 
the purpose of screening or eliminating marginal devices.  
Marginal devices are those with inherent defects or defects 
resulting from manufacturing aberrations which cause time- 
and stress-dependent failures.  As with ESS, Burn-in is 
performed on the entire population.  Readers interested in the 
subject of ESS and Burn-in are encouraged to refer to 
Kececioglu & Sun on ESS [3] and Burn-in [4].  

2.3 Quantitative Accelerated Life Tests 
Quantitative Accelerated Life Testing, unlike the qualitative 

testing methods (i.e., Torture Tests, Burn-in, etc.) described 
previously, consists of quantitative tests designed to quantify 
the life characteristics of the product, component or system 
under normal use conditions, and thereby provide “Reliability 
Information.”  Reliability information can include the 
determination of the probability of failure of the product under 
use conditions, mean life under use conditions, and projected 
returns and warranty costs.  It can also be used to assist in the 
performance of risk assessments, design comparisons, etc. 

Accelerated Life Testing can take the form of  “Usage Rate 
Acceleration” or “Overstress Acceleration.”  Both Accelerated 
Life Test methods are described next.  Because “Usage Rate 
Acceleration” test data can be analyzed with typical life data 
analysis methods, the Overstress Acceleration method is the 
testing method relevant to this Tutorial. 

For all life tests, some time-to-failure information for the 
product is required since the failure of the product is the event 
we want to understand.  In other words, if we wish to 
understand, measure, and predict any event, we must observe 
the event! 

Most products, components or systems are expected to 
perform their functions successfully for long periods of time, 
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such as years.  Obviously, for a company to remain 
competitive, the time required to obtain times-to-failure data 
must be considerably less than the expected life of the product.  
Two methods of acceleration, “Usage Rate Acceleration” and 
“Overstress Acceleration,” have been devised to obtain times-
to-failure data at an accelerated pace.  For products that do not 
operate continuously, one can accelerate the time it takes to 
induce failures by continuously testing these products.  This is 
called “Usage Rate Acceleration.”   For products for which 
“Usage Rate Acceleration” is impractical, one can apply 
stress(es) at levels that exceed the levels that a product will 
encounter under normal use conditions and use the times-to-
failure data obtained in this manner to extrapolate to use 
conditions.  This is called “Overstress Acceleration.” 

2.3.1 Usage Rate Acceleration 
For products that do not operate continuously under normal 

conditions, if the test units are operated continuously, failures 
are encountered earlier than if the units were tested at normal 
usage.  For example, a microwave oven operates for small 
periods of time every day.  One can accelerate a test on 
microwave ovens by operating them more frequently until 
failure.  The same could be said of washers.  If we assume an 
average washer use of 6 hours a week, one could conceivably 
reduce the testing time 28-fold by testing these washers 
continuously.  Data obtained through usage acceleration can 
be analyzed with the same methods used to analyze regular 
times-to-failure data.  The limitation of “Usage Rate 
Acceleration” arises when products, such as computer servers 
and peripherals, maintain a very high or even continuous 
usage.  In such cases, usage acceleration, even though 
desirable, is not a feasible alternative.  In these cases the 
practitioner must stimulate the product to fail, usually through 
the application of stress(es).  This method of accelerated life 
testing is called “Overstress Acceleration” and is described 
next. 

2.3.2 Overstress Acceleration 
For products with very high or continuous usage, the 

accelerated life-testing practitioner must stimulate the product 
to fail in a life test.  This is accomplished by applying 
stress(es) that exceed the stress(es) that a product will 
encounter under normal use conditions.  The times-to-failure 
data obtained under these conditions are then used to 
extrapolate to use conditions.  Accelerated life tests can be 
performed at high or low temperature, humidity, voltage, 
pressure, vibration, and/or combinations of stresses to 
accelerate or stimulate the failure mechanisms.   

Accelerated life test stresses and stress levels should be 
chosen so that they accelerate the failure modes under 
consideration but do not introduce failure modes that would 
never occur under use conditions.  Normally, these stress 
levels will fall outside the product specification limits but 
inside the design limits. 

 

 
Figure 1: Typical stress range for a component, product 

or system. 

This choice of stresses as well as stress levels and the 
process of setting up the experiment is of the utmost 
importance.  Consult your design engineer(s) and material 
scientist(s) to determine what stimuli (stress) is appropriate as 
well as to identify the appropriate limits (or stress levels).  If 
these stresses or limits are unknown, multiple tests with small 
sample sizes can be performed in order to ascertain the 
appropriate stress(es) and stress levels.  The adequacy and 
applicability of these stresses can be confirmed through 
subsequent failure analysis.  Information from the qualitative 
testing phase (i.e., torture tests, etc.) of a normal product 
development process can also be utilized in ascertaining the 
appropriate stress(es).  Proper use of Design of Experiments 
(DOE) methodology is also crucial at this step.  In addition to 
proper stress selection, the application of the stresses must be 
accomplished in some logical, controlled and quantifiable 
fashion.  Accurate data on the stresses applied as well as the 
observed behavior of the test specimens must be maintained.   

It is clear that as the stress used in an accelerated test 
becomes higher the required test duration decreases.  
However, as the stress moves farther away from the use 
conditions, the uncertainty in the extrapolation increases.  This 
is what we jokingly refer to as the “there is no free lunch” 
principle.  Confidence intervals provide a measure of this 
uncertainty in extrapolation. 

3. UNDERSTANDING ACCELERATED LIFE TEST 
ANALYSIS 

In typical life data analysis one determines, through the use 
of statistical distributions, a life distribution that describes the 
times-to-failure of a product.  Statistically speaking, one 
wishes to determine the use level probability density function, 
or pdf, of the times-to-failure.  Once this pdf is obtained, all 
other desired reliability results can be easily determined 
including but not limited to: 

 
 
 



 
RF #2003RM-100: page 3               RF 

Percentage failing under warranty. 
Risk assessment. 
Design comparison. 
Wear-out period (product performance degradation). 

In typical life data analysis, this use level probability density 
function, or pdf, of the times-to-failure can be easily 
determined using regular times-to-failure data and an 
underlying distribution such as the Weibull, exponential, and 
lognormal distributions.  In accelerated life testing analysis, 
however, we face the challenge of determining this use level 
pdf from accelerated life test data rather than from times-to-
failure data obtained under use conditions.  To accomplish 
this, we must develop a method that allows us to extrapolate 
from data collected at accelerated conditions to arrive at an 
estimation of use level characteristics. 

3.1 Looking at a Single Constant Stress Accelerated Life 
Test 

To understand the process involved with extrapolating from 
overstress test data to use level conditions, let’s look closely at 
a simple accelerated life test.  For simplicity we will assume 
that the product was tested under a single stress and at a single 
constant stress level.  We will further assume that times-to-
failure data have been obtained at this stress level.  The times-
to-failure at this stress level can then be easily analyzed using 
an underlying life distribution.  A pdf of the times-to-failure 
of the product can be obtained at that single stress level using 
traditional approaches (for more details see [7, 10]).  This 
overstress pdf, can be used to make predictions and estimates 
of life measures of interest at that particular stress level.  The 
objective in an accelerated life test, however, is not to obtain 
predictions and estimates at the particular elevated stress level 
at which the units were tested, but to obtain these measures at 
another stress level, the use stress level.  To accomplish this 
objective, we must devise a method to traverse the path from 
the overstress pdf to extrapolate a use level pdf. 

The first part of Figure 2 illustrates a typical behavior of the 
pdf at the high stress (or overstress level) and the pdf at the 
use stress level.  To further simplify the scenario, let’s assume 
that a single point can describe the pdf for the product, at any 
stress level.  The second part of Figure 2 illustrates such a 
simplification where we need to determine a way to project (or 
map) this single point from the high stress to the use stress.   

Obviously there are infinite ways to map a particular point 
from the high stress level to the use stress level.  We will 
assume that there is some road map (model or a function) that 
maps our point from the high stress level to the use stress level 
(or shows us the way).  This model or function can be 
described mathematically and can be as simple as the equation 
for a line.  Figure 3 demonstrates some simple models or 
relationships. 
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Figure 2: Traversing from a high stress to our use stress.  

 

 
Figure 3: A simple linear and a simple exponential 

relationship. 

Even when a model is assumed (i.e., linear, exponential, 
etc.), the mapping possibilities are still infinite since they 
depend on the parameters of the chosen model or relationship.  
For example, a simple linear model would generate different 
mappings for each slope value because we can draw an 
infinite number of lines through a point.  If we tested 
specimens of our product at two different stress levels, we 
could begin to fit the model to the data.  Obviously, the more 
points we have, the better off we are in correctly mapping this 
particular point, or fitting the model to our data.  Figure 4 
illustrates that you need a minimum of two stress levels to 
properly map the function to a use stress level. 
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Figure 4: Testing at two (or more) higher stress levels 

allows us to better fit the model. 

4. LIFE DISTRIBUTION AND STRESS-LIFE MODELS 

Analysis of accelerated life test data, then, consists of an 
underlying life distribution that describes the product at 
different stress levels and a stress-life relationship (or model) 
that quantifies the manner in which the life distribution (or the 
life distribution characteristic under consideration) changes 
across different stress levels.  These elements of analysis are 
shown graphically in Figure 5. 
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Figure 5: A life distribution and a stress-life relationship. 

The combination of both an underlying life distribution and 
a stress-life model can be best seen in Figure 6 where a pdf is 
plotted against both time and stress. 

The assumed underlying life distribution can be any life 
distribution.  The most commonly used life distributions 
include the Weibull, the exponential, and the lognormal.  The 
practitioner should be cautioned against using the exponential 
distribution, unless the underlying assumption of a constant 

failure rate can be justified.  Along with the life distribution, a 
stress-life relationship is also used.  A stress-life relationship 
can be one of the empirically derived relationships or a new 
one formulated for the particular stress and application.  The 
data obtained from the experiment is then fitted to both the 
underlying life distribution and stress-life relationship. 

 

Time
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f

 
Figure 6: A three dimensional representation of the pdf 
vs. time and stress created using ReliaSoft’s ALTA 1.0  

software [10]. 

4.1 Overview of the Analysis Steps 
With our current understanding of the principles behind 

accelerated life testing analysis, we will continue with a 
discussion of the steps involved in performing an analysis on 
life data that has been collected from accelerated life tests 

4.1.1 Life Distribution 
The first step in performing an accelerated life test analysis 

is to choose an appropriate life distribution.  Although it is 
rarely appropriate, the exponential distribution, because of its 
simplicity, is very commonly used as the underlying life 
distribution.  The Weibull and lognormal distributions, which 
require more involved calculations, are more appropriate for 
most uses.  Note that the exponential distribution is a special 
case of the Weibull (for b equal to 1). 

4.1.2 Stress-Life Relationship 
After you have selected an underlying life distribution 

appropriate to your data, the second step is to select (or create) 
a model that describes a characteristic point or a life 
characteristic of the distribution from one stress level to 
another. 

The life characteristic can be any life measure such as the 
mean, median, etc.  This life characteristic is expressed as a 
function of stress.  Depending on the assumed underlying life 
distribution, different life characteristic are considered.  
Typical life characteristic for some distributions are shown in 
the next table (Table 1). 
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Table 1: Typical life characteristics 

 
*Usually assumed constant 

For example, when considering the Weibull distribution, the 
scale parameter, h, is chosen to be the “life characteristic” that 
is stress dependent, while b is assumed to remain constant 
across different stress levels.  A stress-life relationship is then 
assigned to h.   

Reliability vs Stress Surface

 
Figure 7: A graphical representation of a Weibull 

reliability function plotted as both a function of time and 
stress.  

5. OVERVIEW OF SOME SIMPLE STRESS-LIFE 
RELATIONSHIPS  

5.1 Arrhenius Relationship 
The Arrhenius relationship is commonly used for analyzing 

data for which temperature is the accelerated stress.  The 
Arrhenius model is given by, 

V
B

eCVL ⋅=)(      
where: 

• L represents a quantifiable life measure, such as mean 
life, characteristic life, median life, or B(x) life, etc. 

• V represents the stress level (in absolute units if it is 
temperature). 

• C is a model parameter to be determined, (C > 0). 

• B is another model parameter to be determined. 

5.2 Eyring Relationship 
The Eyring relationship is also commonly used for 

analyzing data for which temperature is the accelerated stress.  
The Eyring model is given by, 








 −−

⋅= V
B

A

e
V

VL 1)(     

where: 
• L represents a quantifiable life measure, such as mean 

life, characteristic life, median life, B(x) life, etc. 
• V represents the stress level. 
• A is one of the model parameters to be determined. 
• B is another model parameter to be determined. 

5.3 Inverse Power Law Relationship 
The inverse power law relationship (or IPL) is commonly 

used for analyzing data for which the accelerated stress is non-
thermal in nature.  The inverse power law (IPL) model is 
given by, 

nVK
VL

⋅
=

1)(     

where: 
• L represents a quantifiable life measure, such as mean 

life, characteristic life, median life, B(x) life, etc. 
• V represents the stress level. 
• K is a model parameter to be determined, (K > 0). 
• n is another model parameter to be determined. 

5.4 Temperature-Humidity Relationship 
The temperature-humidity relationship is a two-stress 

relationship.  It is commonly used for predicting the life at use 
conditions when temperature and humidity are the accelerated 
stresses in a test.  This combination model is given by, 








 +

⋅= U
b

VeAVUL
φ

),(     
where: 

• f is one of the three parameters to be determined. 
• b is the second of the three parameters to be determined 

(also known as the activation energy for humidity). 
• A is the third of the three parameters to be determined. 
• U is the relative humidity. 
• V is temperature (in absolute units). 

5.5 Temperature-Non-Thermal Relationship 
The temperature-non-thermal relationship is another two-

stress model.  This relationship is given by, 

V
B

neU

CVUL
−

=),(     

where: 
• U is the non-thermal stress (e.g., voltage). 
• V is the temperature (in absolute scale). 
• B, C, n are the parameters to be determined. 
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6. PARAMETER ESTIMATION 

Once you have selected an underlying life distribution and 
stress-life relationship model to fit your accelerated test data, 
the next step is to select a method by which to perform 
parameter estimation.  Simply put, parameter estimation 
involves fitting a model to the data and solving for the 
parameters that describe that model.  In our case the model is a 
combination of the life distribution and the stress-life 
relationship.  The task of parameter estimation can vary from 
trivial (with ample data, a single constant stress, a simple 
distribution and a simple model) to impossible.  Available 
methods for estimating the parameters of a model include the 
graphical method, the least squares method and the maximum 
likelihood estimation method.  Computer software can be used 
to accomplish this task [12; 10; 11]. 

7. RELIABILITY INFORMATION 

Once the parameters of the underlying life distribution and 
stress-life relationship have been estimated, a variety of 
reliability information about the product can be derived such 
as:  

• Warranty time.  
• The instantaneous failure rate, which indicates the 

number of failures occurring per unit time. 
• The mean life which provides a measure of the average 

time of operation to failure. 

8. STRESS LOADING 

The discussion of accelerated life testing analysis thus far 
has included the assumption that the stress loads applied to 
units in an accelerated test have been constant with respect to 
time.  In real life, however, different types of loads can be 
considered when performing an accelerated test.  Accelerated 
life tests can be classified as constant stress, step stress, 
cycling stress, or random stress.  These types of loads are 
classified according to the dependency of the stress with 
respect to time.  There are two possible stress loading 
schemes, loadings in which the stress is time-independent and 
loadings in which the stress is time-dependent.  The 
mathematical treatment, models and assumptions vary 
depending on the relationship of stress to time.  This tutorial 
deals with time-independent stresses, the most common type 
of stress loading.  Treatment of time-dependent stresses is 
complex and well beyond the scope of this tutorial.  
Participants interested in the analysis of data utilizing time-
dependent stresses can refer to [9].   

8.1 Stress is Time-Independent (Constant Stress) 
When the stress is time-independent, the stress applied to a 

sample of units does not vary.  In other words, if temperature 
is the thermal stress, each unit is tested under the same 
accelerated temperature, e.g., 100° C, and data are recorded.  
This is the type of stress load that has been discussed so far. 

 
 
 
 

 
Figure 8: Graphical representation of time vs. stress in a 

time-independent stress loading. 

This type of stress loading has many advantages over time-
dependent stress loadings.  Specifically: 
Most products are assumed to operate at a constant stress 
under normal use. 
It is far easier to run a constant stress test (e.g., one in which 
the chamber is maintained at a single temperature). 
It is far easier to quantify a constant stress test. 
Models for data analysis exist, are widely publicized and are 
empirically verified. 
Extrapolation from a well executed constant stress test is 
more accurate than extrapolation from a time-dependent 
stress test. 

8.2 Stress is Time-Dependent 
When the stress is time-dependent, the product is subjected 

to a stress level that varies with time.  Products subjected to 
time-dependent stress loadings will yield failures more 
quickly and models that fit them are thought by many to be 
the “holy grail” of accelerated life testing.  The current state of 
analysis techniques for time-dependent stress loading schemes 
can be best expressed by a passage in Dr. Wayne Nelson’s 
accelerated testing book [6].  

Dr. Nelson writes, “Such cumulative exposure models are 
like the weather.  Everybody talks about them, but nobody 
does anything about them.  Many models appear in literature, 
few have been fitted to data and even fewer assessed for 
adequacy of fit.  Morever, fitting such a model to data requires 
a sophisticated special computer program.  Thus, constant 
stress tests are generally recommended over step-stress tests 
for reliability estimation.”  

8.3 Stress is Quasi Time-Dependent 
The step-stress model [6] and the related ramp-stress model 

are typical cases of time-dependent stress tests.  In these cases, 
the stress is quasi time-independent.  This means that the 
stress load remains constant for a period of time and then is 
stepped/ramped into a different stress level where it remains 
constant for another time interval until it is stepped/ramped 
again.  There are numerous variations of this concept. 
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Figure 9: Graphical representation of the step-stress 

model. 

 

 
Figure 10: Graphical representation of the ramp-stress 

model. 

8.4 Stress is Continuously Time-Dependent 
The concept of stress-life models that includes stress as a 

continuous function of time has not been widely contemplated 
in the literature.  An introduction to these models can be found 
in [6] and in-depth discussion and applications in [9].  
Analyses of these types of stress models are more complex 
than the quasi time-dependent models and require advanced 
software packages such as [11] to accomplish. 

 

 
Figure 11: Graphical representation of a constantly 

increasing (or progressive) stress model. 

 
Figure 12: Graphical representation of a completely 

time-dependent stress model. 

9. AN INTRODUCTION TO THE ARRHENIUS 
RELATIONSHIP 

One of the most commonly used stress-life relationships is 
the Arrhenius.  It is an exponential relationship and it was 
formulated by assuming that life is proportional to the inverse 
reaction rate of the process, thus the Arrhenius stress-life 
relationship is given by, 

V
B

eCVL ⋅=)(              (1) 
where: 

• L represents a quantifiable life measure, such as mean 
life, characteristic life, median life, or B(x) life, etc. 

• V represents the stress level (formulated for temperature 
and temperature values in absolute units i.e., degrees 
Kelvin or degrees Rankine.  This is a requirement 
because the model is exponential, thus negative stress 
values are not possible.) 

• C is one of the model parameters to be determined, (C > 
0). 

• B is another model parameter to be determined. 
Since the Arrhenius is a physics-based model derived for 

temperature dependence, it is strongly recommended that the 
model be used for temperature-accelerated tests.  For the same 
reason, temperature values must be in absolute units (Kelvin 
or Rankine), even though eq (1) is unitless.  

The Arrhenius relationship can be linearized and plotted on 
a life vs. stress plot, also called the Arrhenius plot.  The 
relationship is linearized by taking the natural logarithm of 
both sides in eq (1) or,  

V
BCVL += )ln())(ln(             (2) 

In eq (2) ln(c) is the intercept of the line and B is the slope 
of the line.  Note that the inverse of the stress, and not the 
stress, is the variable.  In Figure 13, life is plotted versus stress 
and not versus the inverse stress.  This is because eq (2) was 
plotted on a reciprocal scale.  On such a scale, the slope B 
appears to be negative even though it has a positive value.  
This is because B is actually the slope of the reciprocal of the 
stress and not the slope of the stress.  The reciprocal of the 
stress is decreasing as stress is increasing 1/V is decreasing as 
V is increasing).  The two different axes are shown in Figure 
14. 
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Figure 13: The Arrhenius relationship linearized on log-

reciprocal paper. 

 

 
Figure 14: An illustration of both reciprocal and non-

reciprocal scales for the Arrhenius relationship. 

 
The Arrhenius relationship is plotted on a reciprocal scale 

for practical reasons.  For example, in Figure 14 it is more 
convenient to locate the life corresponding to a stress level of 
370K rather than to take the reciprocal of 370K (0.0027) first, 
and then locate the corresponding life. 

The shaded areas shown in Figure 14 are the imposed pdf’s 
at each test stress level.  From such imposed pdf’s one can see 
the range of the life at each test stress level, as well as the 
scatter in life.   

 

9.1 A Look at the Parameter B 
Depending on the application (and where the stress is 

exclusively thermal), the parameter B can be replaced by, 
 

15 KeV10623.8
energy activation
constant sBoltzman'
energy activation

−− ⋅×
=

=

=
K
E

B A

            (3) 

 
Note that in this formulation, the activation energy must be 

known apriori.  If the activation energy is known then there is 
only one model parameter remaining, C.  Because in most 
real life situations this is rarely the case, all subsequent 
formulations will assume that this activation energy is 
unknown and treat B as one of the model parameters.  As it 
can be seen in eq (3), B has the same properties as the 
activation energy.  In other words, B is a measure of the effect 
that the stress (i.e., temperature) has on the life.  The larger the 
value of B, the higher the dependency of the life on the 
specific stress.  Parameter B may also take negative values.  
In that case, life is increasing with increasing stress (see 
Figure 15).  An example of this would be plasma filled bulbs, 
where low temperature is a higher stress on the bulbs than 
high temperature. 

 

 
Figure 15: Behavior of the parameter B. 
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9.2 Acceleration Factor 
Most practitioners use the term acceleration factor to refer to 

the ratio of the life (or acceleration characteristic) between the 
use level and a higher test stress level or, 

dAccelerate

USE
F L

LA =  

For the Arrhenius model this factor is, 
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Thus, if B is assumed to be known apriori (using an 
activation energy), the assumed activation energy alone 
dictates this acceleration factor! 

9.3 Arrhenius Relationship Combined with a Life 
Distribution 

All relationships presented must be combined with an 
underlying life distribution for analysis.  The simplest 
combination is with the exponential distribution as shown 
next: 

9.3.1 Arrhenius Exponential 
The pdf of the 1-parameter exponential distribution is given 

by, 
tetf ⋅−⋅= λλ)(             (4) 

It can be easily shown that the mean life for the 1-parameter 
exponential distribution is given by,  

m
1

=λ               (5) 

thus, 

m
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1)(              (6) 

The Arrhenius-exponential model pdf can then be obtained 
by setting m = L(V)  in eq (6).  Therefore, 

V
B
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Substituting for m in eq (6) yields a pdf that is both a 
function of time and stress or, 
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Once the pdf is obtained all other metrics of interest (i.e., 
Reliability, MTTF, etc.) can be easily formulated.  For more 
information see [12; 8].  

9.3.2 Arrhenius Weibull 
A more useful variation is the Weibull-Arrhenius 

formulation, which is obtained by considering the pdf for 2-
parameter Weibull distribution. It is given by, 
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The scale parameter (or characteristic life) of the Weibull 
distribution is h.  The Arrhenius-Weibull model pdf can then 
be obtained by setting h = L(V) in eq (7), 
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and substituting for h in eq (7), 
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An illustration of the pdf for different stresses is shown in 
Figure 16.  As expected, the pdf at lower stress levels is more 
stretched to the right, with a higher scale parameter, while its 
shape remains the same (the shape parameter is approximately 
3 in Figure 16).  This behavior is observed when the 
parameter B of the Arrhenius model is positive.   Figure 17 
illustrates the behavior of the reliability function for the same 
parameter set. 

 

 
Figure 16: Behavior of the probability density function 

at different stresses and with the parameters held 
constant. 
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Figure 17: Behavior of the reliability function at 

different stresses and constant parameter values. 

The advantage of using the Weibull distribution as the life 
distribution lies in its flexibility to assume different shapes. 

9.3.3 Example 
Consider the following times-to-failure data at three 

different stress levels. 

Table 2: Times-to-failure data at three different stress 
levels. 

 
 
The data were analyzed jointly and with a complete MLE 

solution over the entire data set, using [10].  The analysis 
yields, 

984.58

618.1861

291.4
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=

=
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B
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β

 

Once the parameters of the model are estimated, 
extrapolation and other life measures can be directly obtained 
using the appropriate equations.  Using the MLE method, 
confidence bounds for all estimates can be obtained.  Note in 
Figure 18 below that the more distant the accelerated stress 
from the operating stress, the greater the uncertainty of the 

extrapolation.  The degree of uncertainty is reflected in the 
confidence bounds. 

 

 
Figure 18: Comparison of the confidence bounds for 

different use stress levels. 

 

9.4 Other Single Constant Stress Models 
The same formulations can be applied to other models such 

as the  
• Eyring relationship (exponential relationship). 
• Inverse Power Law relationship (power relationship). 
• Coffin Manson relationship (power relationship utilizing 

a ∆V for stress). 
One must be cautious in selecting a model.  The physical 

characteristics of the failure mode under consideration must 
be understood and the selected model must be appropriate.  As 
an example, in cases where the failure mode is fatigue the use 
of an exponential relationship would be inappropriate since 
the physical mechanism are based on a power relation, thus a 
power model would be more appropriate (i.e., Inverse Power 
Law model).   

10. AN INTRODUCTION TO TWO-STRESS MODELS 

10.1 Temperature-Humidity Relationship Introduction 
A variation of the Eyring relationship is the temperature-

humidity (T-H) relationship, which has been proposed for 
predicting the life at use conditions when temperature and 
humidity are the accelerated stresses in a test.  This 
combination model is given by, 









+

⋅= U
b

VeAVUL
φ

),(  
where,  

• f is one of the three parameters to be determined, 
• b is the second of the three parameters to be determined 

(also known as the activation energy for humidity), 
• A is a constant and the third of the three parameters to be 

determined, 
• U is the relative humidity (decimal or percentage), 
• V is temperature (in absolute units) 
 



 
RF #2003RM-100: page 11               RF 

Since life is now a function of two stresses, a life vs. stress 
plot can only be obtained by keeping one of the two stresses 
constant and varying the other one.  In Figure 19 below, data 
obtained from a temperature and humidity test were analyzed 
and plotted on log-reciprocal paper.  On the first plot, life is 
plotted versus temperature with relative humidity held at a 
fixed value.  On the second plot, life is plotted versus relative 
humidity with temperature held at a fixed value. 

Note that in Figure 19 the points shown in these plots 
represent the life characteristics at the test stress levels (the 
data were fitted to a Weibull distribution, thus the points 
represent the scale parameter, h).  For example, the points 
shown in the first plot represent h at each of the test 
temperature levels (two temperature levels were considered in 
this test). 

 

 

 
Figure 19: Life vs. stress plots for the Temperature-

Humidity model, holding humidity constant on the first 
plot and temperature constant on the second. 

10.1.1 A Note about T-H Data 
When using the T-H relationship, the effect of both 

temperature and humidity on life is sought.  For this reason, 
the test must be performed in a combination manner between 
the different stress levels of the two stress types.  For example, 
assume that an accelerated test is to be performed at two 
temperature and two humidity levels.  The two temperature 
levels were chosen to be 300K and 343K.  The two humidity 
levels were chosen to be 0.6 and 0.8.  It would be wrong to 

perform the test at (300K, 0.6) and (343K, 0.8).  Doing so 
would not provide information about the temperature-
humidity effects on life.  This is because both stresses are 
increased at the same time and therefore it is unknown which 
stress is causing the acceleration on life.  A possible 
combination that would provide information about 
temperature-humidity effects on life would be (300K, 0.6), 
(300K, 0.8) and (343K, 0.8).  It is clear that by testing at 
(300K, 0.6) and (300K, 0.8) the effect of humidity on life can 
be determined (since temperature remained constant).  
Similarly, the effects of temperature on life can be determined 
by testing at (300K, 0.8) and (343K, 0.8) (since humidity 
remained constant). 

10.1.2 An Example Using the T-H Model 
The following data were collected after testing twelve 

electronic devices at different temperature and humidity 
conditions: 

Table 3:  T-H Data 

 
 
Using [10], the following results were obtained:  

330.5630

281.0

0000597.0ˆ
874.5
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10.2 Temperature-Non-Thermal Relationship Introduction 
When temperature and a second non-thermal stress (e.g., 

voltage) are the accelerated stresses of a test, then the 
Arrhenius and the inverse power law models can be combined 
to yield the temperature-non-thermal (T-NT) model.  This 
model is given by,  

V
B

neU

CVUL
−

=),(  

where,  
• U is the non-thermal stress (i.e., voltage, vibration, etc.), 
• V is the temperature  (in absolute units) 
• B, C, and n are the parameters to be determined. 

In Figure 20 below, data obtained from a temperature 
and voltage test were analyzed and plotted on a log-
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reciprocal scale.  In the first plot, life is plotted versus 
temperature, with voltage held at a fixed value.  In the 
second plot life is plotted versus voltage, with 
temperature held at a fixed value. 
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Figure 20: Life vs. stress plots for the Temperature-

Humidity model, holding voltage constant on the first plot 
and temperature constant on the second. 

11. A VERY SIMPLE TUTORIAL EXAMPLE 

To illustrate the principles behind accelerated testing, 
consider the following simple example that involves a paper 
clip and can be easily and independently performed by the 
reader.  The objective was to determine the mean number of 
cycles-to-failure of a given paper clip.  The use cycles were 

assumed to be at a 45° bend.  The acceleration stress was 
determined to be the angle to which we bend the clips, thus 
two accelerated bend stresses of 90° and 180° were used.  
The paper clips were tested using the following procedure for 
the 90° bend.  A similar procedure was also used for the 180° 
and 45° test. 

 
 

 
1. To Open the Paper Clip. 

 
1. With one hand, hold the 

clip by the longer, outer 
loop. 

2. With the thumb and 
forefinger of the other 
hand, grasp the smaller, 
inner loop. 

3. Pull the smaller, inner 
loop out and down 90 
degrees so that a right 
angle is formed as 
shown. 

  
 

 
2. To Close the Paper Clip. 

 
1. With one hand, continue 

to hold the clip by the 
longer, outer loop. 

2. With the thumb and 
forefinger of the other 
hand, grasp the smaller, 
inner loop. 

3. Push the smaller inner 
loop up and in 90 degrees so that the smaller loop is 
returned to the original upright position in line with the 
larger, outer loop as shown. 

4. This completes one cycle. 
 
3. Repeat until the paper clip breaks.  Count and record 
the cycles-to-failure for each clip.  
 

At this point the reader must note that the paper clips used in 
this example were “Jumbo” paper clips capable of repeated 
bending, different paper clips will yield different results.  
Additionally, and so that no other stresses are imposed, 
caution must be taken to assure that the rate at which the paper 
clips are cycled remains the same across the experiment. 

For the experiment a sample of six paper clips was tested to 
failure at both 90° and 180° bends.  A base test sample of six 
paper clips was tested at a 45° bend (the assumed use stress 
level) to confirm the analysis.  The cycles-to-failure data 
obtained are given next. 



 
RF #2003RM-100: page 13               RF 

 
Cycles-to-failure at 90°  

16, 17, 18, 21, 22, 23 cycles. 
 

 
Cycles-to-failure at 180°  
4, 5, 5, 5.5, 6, 6.5 cycles. 

 

 
Cycles-to-failure at 45°  

58, 63, 65, 72, 78, 86 cycles. 
 
The accelerated test data were then analyzed in [10], 

assuming a lognormal life distribution (fatigue) and an inverse 
power law relationship (non-thermal) for the stress-life model.  
The analysis and some of the results are shown in the next 
figures.  The base data were analyzed using [12] and a base 
MTTF estimated.  In this case our accelerated test correctly 
predicted the MTTF as verified by our base test. 

It is interesting to note (see Figure 23) that mathematically 
one can come up with very high acceleration factors.  
However for one to accomplish this, these stresses must be 
foolishly high (i.e., 360+ degree bend on the paper clips) and 
would cause the product to fail under modes that are not 
realistic. 

 

 
Figure 21: The accelerated test data analyzed in [10]. 

 

 
Figure 22: Resulting Probability plot for 90 and 180 

bends.  

 

 
Figure 23: The resulting acceleration factor versus stress 

plot. 
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Figure 24: The resulting life versus stress plot from [10].  

Note that from the plot the estimated MTTF at a 45° bend 
is 71.6 cycles.  This was estimated utilizing the 90° and 

180° bend data. 

Note that the base 45° data analyzed in [12], utilizing a 
lognormal distribution yielded an MTTF estimate of 70.33 
cycles. 

12. ADVANCED CONCEPTS 

12.1 Confidence Bounds 
The confidence bounds on the parameters and a number of 

other quantities such as the reliability and the percentile can be 
obtained based on the asymptotic theory for maximum 
likelihood estimates, for complete and censored data.  This 
type of confidence bounds, are most commonly referred to as 
the Fisher matrix bounds.   

12.2 Multivariable Relationships 
So far in this tutorial the life-stress relationships presented 

have been either single stress relationships or two stress 
relationships.  In most practical applications however, life is a 
function of more than one or two variables (stress types).  In 
addition, there are many applications where the life of a 
product as a function of stress and of some engineering 
variable other than stress is sought.  A multivariable 
relationship is therefore needed in order to analyze such data. 

Such a relationship is the general log-linear relationship, 
which describes a life characteristic as a function of a vector 
of n stresses.  Mathematically the model is given by, 











+∑

==

m

i
ii Xaa

eXL 1
0

)( , 
where: 

• αj are model parameters. 
• X  is a vector of n stresses. 

Note that a reciprocal transformation on X, or X=1/V will 
result to an exponential life stress relationship, while a 
logarithmic transformation, X=ln(V) results to a power life 
stress relationship. 

12.3 Time-Varying Stress Models 
When the test stresses are time-dependent (see Section 8), 

the life-stress relationships can be extended to account for this 
type of stresses.  As an example consider an exponential life 
stress relationship utilizing a time-varying stress: 
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Treatment and analysis of time-varying stresses requires 

further assumptions and more complex analysis techniques [6, 
9, 11]. 
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Accelerated testing is an efficient strategy to improve reliability for commercial and utility photovoltaic inverter equipment. 
The two most often used tests are highly accelerated life testing (HALT) and accelerated life testing (ALT). 
 
HALT is a technique that yields results within a few days due to the nature of the acceleration factors used in the test 
whereby the unit is subjected to progressively higher stress levels and the inclusion of combined temperature and 
vibration. HALT is an invaluable method to uncover design weaknesses and is used at both the system as well as 
assembly level. 
 
Accelerated Life Testing (ALT) is useful to determine wear-out mechanisms or lifetime within confidence limits. ALT is 
capable of determination for product reliability in a short time period of weeks or months by environmental acceleration 
factors. ALT can find dominant failure mechanisms and is a valuable tool for the discovery of wear-out failure. In addition, 
ALT methods can serve as qualification criteria to prescribed lifetime confidence limits. 
 
ALT at the system level involves integration of multiple units such as an inverter and power supply within a large 
environmentally controlled facility. Subsystem life testing can be completed within smaller environmental enclosures or 
may be accomplished as a component integrated within the inverter at the unit or system level testing facility. 
 
For ALT, the acceleration factor, length of the test, number of samples, confidence required, and test environment are 
known. The most common temperature acceleration factor is based upon the Arrhenius model. For PV inverters another 
acceleration factor is the duty cycle whereby testing may be accomplished continually as opposed to the sun-cycle 
restrictions for on-site exposure. In addition, inclusion of solar simulation methods provides for inverter cycling 
experienced during environmental and solar resource extremes. One element of efficient ALT qualification is envelope 
performance testing at environmental extremes. 
 
It is advantageous to synergize the HALT methods to determine design weaknesses and ALT procedures which provide 
insight into wear-out lifetimes. Once, it has been determined that the inverter design can attain expected lifetimes, burn-in 
procedures are developed and used to ensure that the product does not contain process or assembly defects. 
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Methodology - Reliability Assurance Milestones 
During Inverter Product Lifecycle 
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AE uses  a closed loop 
reliability process 
Design for Reliability 

• MTBF, DFMEA, Fault Tree 
Reliability Test 

• Quantitative: ALT, Thermal 
• Qualitative: HALT 

Qualification Test 
• Power profile, efficiency, 

harmonics, waveform, 
modulation, control loop, 
compliance, WCSA, limits, 
control & communication, 
burn-in development 

DESIGN FOR RELIABILITY, 
MAINTAINABILITY AND 
MANUFACTURABILITY 

QUALIFICATION TESTING 

FIELD MONITORING AND FRACAS 

MANUFACTURING QUALITY ASSURANCE 
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Range of PV Inverters for Accelerated Testing 

• String Inverters such as the 
3TL Gen3 24kW 
 
 
 

• Central Inverters such as the 
500TX and 500NX 
 

 
 

• Utility Inverters such as the 
1000NX 



AE Reliability Assurance Background 
AE Reliability Assurance Program 

Advanced Power Supply Infrastructure and Simulation 

• AE’s Solar and Precision Power 
Supply customer base requires a 
reliability focus. 

• All products  are required to meet a 
very low AFR 

   +  

• PV Inverter products have unique 
challenges 

• Grid and Solar Simulators 
• High Firmware Contact – HIL Methods 
• Harsh Environment 
• Stringent Warranties 
• Monitoring 
• Inverter Reliability Must Compensate for 

BOE Issues 
• 20-Year Durability 
• >99% Availability 
• High Efficiency 

 



Inverter Reliability Assurance Program 
• Design for Reliability (DfR) Focus Areas 

• Modularity; Improves reliability, repair, test, and manufacturing 
• Derating; Component and subassembly derating to reduce 

operating stress 
• Temperature Management; Achievement of reduced operating 

temperatures 
• Predictive Methods – MTBF, DFMEA, Fault Tree Assessments 

• Reliability Test 
• Verification of potential causes based upon DFMEA 

• Subassembly ALT, Thermal, Thermal Cycle 
• Environmental Testing – Temp/Humidity, Salt Fog 
• HALT 
• System Level ALT 

• Experience; Reliability Growth 
• Product lifecycle learning experiences into design 

• Improvements based upon assurance testing and field experience 

Focus 
For 
This 

Presentation 



Accelerated Testing Applied to PV Inverters 

• Accelerated Life Testing 
• Temperature 
• Humidity, Temperature-Humidity 
• Voltage 

• Temperature Cycling 
• Power Cycling 
• Highly Accelerated Life Testing 

• Cold step stressing  
• Hot step stressing 
• Rapid thermal transitions 
• Vibration step stressing 
• Combined environments 



 Performance Testing – Solar Simulation 

• AE has installed programmable 
supplies to perform solar simulation 
testing 

• Example of NREL test profile 
demonstrated with 1000NX inverter 

• Example of actual site irradiance 
data programmed for test 
 

Advanced Power Supply AC2000P 

Environmental Chamber 



Accelerated Life Test (ALT) – Temperature Acceleration 
Durability tests such as subsystem and 
system level accelerated life testing (ALT) 
are key tools to qualify the reliability of new 
designs. 
 
The most common temperature 
acceleration factor AF(T) is based upon the 
Arrhenius model                    

• Kb is the Boltzmann’s constant, To is the initial 
ambient temperature in °K, T is the life test 
temperature in °K, and Ea is the activation 
energy in eV. 

λ  ∝ Failures/(Total Device Hours × AF(T)) 
AF(T) = exp[(Ea/Kb)(1/To – 1/T)]  

ALT is a gage of the inverter 
durability to reach end-of-life 
failure rate region 

The acceleration factor scales for different 
activation energies and life test temperatures. 



Long Term Life Test Profile Example; System Level ALT 

Repeat 
Cycle 

System Environmental  
Chamber 

AE has performed ALT for up to two calendar years upon inverters at 50degC, 24X7 



Short Term Life Test Profile Example; System Level ALT 
AE has developed 
accelerated life test 
facilities in Fort Collins, CO 
and Bend, OR which are 
capable of grid test 
simulation at high 
temperatures using 
advanced programmable 
power supplies with solar 
simulators 

Anderson Electric Controls Supply and Solar Simulator 
Inverter housed within AE environmental chamber 

Using solar simulators, AE has performed ALT for up to two calendar months  
upon inverters at 50degC, 24X7 



AE Background with HALT, HASS 

• Highly accelerated life test (HALT) 
is a qualitative technique 
pioneered by leading firms such 
as HP to develop very reliable 
printers 

• AE adopted the technique to 
develop reliable precision power 
supplies used in semiconductor 
processing 

• Several HALT chambers were 
installed for testing and 
qualification as well as highly 
accelerated stress screening 
(HASS) chambers 

• HALT has been used for the past 
seven years to test and quality PV 
inverter systems and subsystems 



Highly Accelerated Life Test - HALT 
• HALT is intended to uncover 

design and design margin 
issues 
• Five stresses 

• Cold step stressing  
• Hot step stressing 
• Rapid thermal transitions 
• Vibration step stressing 
• Combined environments 
in addition to maximum loading 
the inverters are exercised under 
power 

• Corrective Actions 
• Achievement of acceptable 

design margins; Temperature 
margins, Vibration margins, 
Combined stresses 

Field 
Stress 

Test 
Stress

Product 
Strength

Field 
Failures 

<5%

Test 
Failures 

?5%



• Utility Inverters 
• Entire Switching 

Assembly (Engine) 
• DC Contactor 

Assemblies 
• Aux Power Supplies 
• Cable Assemblies 
• Line Reactors 
• Communication 

Subsystem 
• PCBAs 

• Digital Control 
• Analog 
• Sensor Control 

 

• String Inverters 
• Entire 3TL 24kW 
• Entire 3TL 48kW 

HALT; PV Inverter Subsystems and Systems 



System Level Burn-In for Utility Inverters 
• Burn-in testing takes place at the unit 

level to stress the components for a 
designated period time to precipitate 
component early lifetime mortality - 
Temperature and Voltage Acceleration 
Factors  

• The burn-in cycle contains voltage and 
power cycling which is done to ensure 
that power connections such as the 
bolted-joint assemblies are robust as 
well as to test low power electrical 
connector interfaces 
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Production Burn-In reduces the number of failures 
in the early (decreasing failure rate) lifetime region 

Weibull statistics are accumulated to assess the burn-in cycle 



Conclusions 

16 

• Accelerated life testing can be effectively employed for 
both subsystem and system level qualification of central, 
utility and string inverters 

• HALT qualification is most effective at the subsystem 
level for central and utility inverters 

• For string inverters, HALT qualification offers a unique 
approach for reliability improvement of the entire product 
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An Introduction to Fault Tree
Analysis (FTA)

Dr Jane Marshall

Product Excellence using 6 Sigma
Module

PEUSS 2011/2012 FTA Page 1

Objectives

– Understand purpose of FTA

– Understand & apply rules of FTA

– Analyse a simple system using FTA

– Understand & apply rules of Boolean algebra

PEUSS 2011/2012 FTA Page 2
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Relationship between FMEA
& FTA

Part Failure

Product Failure

Failure Mode & Effect
Analysis (FMEA)

Fault Tree
Analysis (FTA)

PEUSS 2011/2012 FTA Page 3

Fault Tree Analysis

• Is a systematic method of System Analysis

• Examines System from Top  Down

• Provides graphical symbols for ease of understanding

• Incorporates mathematical tools to focus on critical areas

PEUSS 2011/2012 FTA Page 4
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Fault tree analysis (FTA)

• Key elements:

– Gates represent the outcome

– Events represent input to the gates

• FTA is used to:

– investigate potential faults;

– its modes and causes;
– and to quantify their contribution to system unreliability in the

course of product design .

PEUSS 2011/2012 FTA Page 5

Symbols

A B

‘AND’ Gate

A B

‘OR’ Gate

Basic Event

Transfer in

Transfer out

PEUSS 2011/2012 FTA Page 6

A U BA ∩ B
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Example Fault Tree

54 65

64

54 65

64

64 531 2

97 8

1 2

109

7 8

•A

21 32

31

21 32

31

•A

Top eventA developed Tree …..

… .. Ready for analysis

PEUSS 2011/2012 FTA 7

Example: redundant fire pumps

Source: http://www.ntnu.no/ross/srt/slides/fta.pdf
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Example: redundant fire pumps

Source: http://www.ntnu.no/ross/srt/slides/fta.pdf

PEUSS 2011/2012 FTA Page 9

Example

PEUSS 2011/2012 FTA Page 10
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Example

PEUSS 2011/2012 FTA Page 11

Methodology (Preliminary
Analysis)

• Set System Boundaries

• Understand Chosen System

• Define Top Events

PEUSS 2011/2012 FTA Page 12
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1. The “Immediate, Necessary & Sufficient” Rule

2. The “Clear Statement” Rule

3. The “No Miracles” Rule

4. The “Complete-the-Gate” Rule

5. The “No Gate-to-Gate” Rule

6. The “Component or System Fault?” Rule

Methodology (Rules)

PEUSS 2011/2012 FTA Page 13

Closest in space, time and derivation of the event above

Necessary

There is no redundancy in the statement or gate linkage
The event above could not result from a sub set of the causal
eventsSufficient

The events will, in all circumstances and at all times, cause
the event above

Methodology (Rules - 1) –
immediate, necessary and sufficient
cause

Immediate

PEUSS 2011/2012 FTA Page 14
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Write event box statements clearly, stating
precisely what the event is and when it
occurs

Methodology (Rules - 2) – The
clear statement rule

PEUSS 2011/2012 FTA Page 15

If the answer to the question:

“Can this fault consist of a component failure?” is Yes,

– Classify the event as a “State of component fault”

If the answer is No,

– Classify the event as a “state of system fault”

Methodology (Rules - 3) – The
‘component or systems fault’ rule

PEUSS 2011/2012 FTA Page 16
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If the normal functioning of a component
propagates a fault sequence, then it is
assumed that the component functions
normally

Methodology (Rules - 4) – no
miracles rule

PEUSS 2011/2012 FTA Page 17

All inputs to a particular gate should be
completely defined before further
analysis of any one of them is
undertaken

Methodology (Rules - 5) – the
complete gate rule

PEUSS 2011/2012 FTA Page 18
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Gate inputs should be properly defined fault
events, and gates should not be directly
connected to other gates

Methodology (Rules - 6) no gate
to gate rule

PEUSS 2011/2012 FTA Page 19

Battery

Switch

Motor

Connector A

Connector B
….. Motor does not
run when switch is
pressed

Fault Tree Example

PEUSS 2011/2012 FTA Page 20
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Fault Tree Example

Motor does not
run

No Power
SupplyMotor

failed

No
connection

Switch
malfunction Battery

is dead

Connector
B

detached

Connector

detached
AInsufficient

force is
applied

Switch
is

broken

top event …..

motor does not run
when switch is pressed

PEUSS 2011/2012 FTA Page 21

Algebraic representation is:
Q = ( A  C )  ( D  B )

 or gate  and gate

Qualitative Analysis
(Combination of Gates)

PEUSS 2011/2012 FTA Page 22

Q

A C D B
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Qualitative Analysis
(Cut Sets)

A listing taken directly from the Fault Tree
of the events, ALL of which must occur to
cause the TOP Event to happen

PEUSS 2011/2012 FTA Page 23

Algebraic representation is:

Q = ( A  C )  ( D  B )

which can be re-written as:

Q = ( A  D )  ( A  B )  ( C  D )  ( C  B )
Q = ( A • D ) + ( A • B ) + ( C • D ) + ( C • B )

… which is a listing of Groupings ...each of
which is a Cut Set

AD AB CD BC

Qualitative Analysis (Cut Sets)

PEUSS 2011/2012 FTA Page 24

Q

A C D B
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Qualitative Analysis
(Minimal Cut Sets)

A listing, derived from the Fault Tree Cut Sets and
reduced by Boolean Algebra, which is the smallest
list of events that is necessary to cause the Top
Event to happen

PEUSS 2011/2012 FTA Page 25

Qualitative Analysis
(Boolean Algebra)

Commutative laws
A  B = B  A
A  B = B  A

Associative laws
A  (B  C) = (A  B)  C
A  (B  C) = (A  B)  C

Distributive laws
A  (B  C) = A  B  A  C
A  (B  C) = (A  B)  (A  C)

PEUSS 2011/2012 FTA Page 26

Commutative laws
A • B = B • A
A + B = B +A

Associative laws
A • (B • C) = (A • B) • C
A + (B + C) = (A + B) + C

Distributive laws
A • (B + C) = A • B + A • C
A + (B • C) = (A + B) • (A + C)
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Qualitative Analysis
(Boolean Reduction)

Idempotent laws

A • A = A
A +A = A

Absorption law

A + (A • B) = A

Top event

AB

A

PEUSS 2011/2012 FTA Page 27

CA BD

CDBA

A  B D  C

A  C D  B

( A  C )  ( D  B )

( A  B )  ( ( A  C )  ( D  B ) )  ( D  C )

Exercise in deriving Cut Sets
…..

PEUSS 2011/2012 FTA Page 28
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Solution …..

( A  B )  (( A  C )  ( D  B ))  ( D  C )

 ( A + B ) • ( A • C + D • B ) • D • C

 AACDC + ADBDC + BACDC + BDBDC

 ACD + ABCD + ABCD + BCD

 ACD + BCD

Minimal Cut Sets …… ACD, BCD

PEUSS 2011/2012 FTA Page 29

Design Analysis of Minimal Cut Sets

A Cut Set comprising several components is less likely to fail than
one containing a single component

Hint .....

AND Gates at the top of the Fault Tree increase the number of
components in a Cut Set

OR Gates increase the number of Cut Sets, but often lead to single
component Sets

PEUSS 2011/2012 FTA Page 30
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Benefits and limitations

• Prepared in early stages of a design and further developed in
detail concurrently with design development.

• Identifies and records systematically the logical fault paths from a
specific effect, to the prime causes

• Allows easy conversion to probability measures

• But may lead to very large trees if the analysis is extended in
depth.

PEUSS 2011/2012 FTA Page 31

• Depends on skill of analyst

• Difficult to apply to systems with partial success

• Can be costly in time & effort

Software

• Software packages available for reliability tools

• Relex

• Relia soft

• others

PEUSS 2011/2012 FTA Page 32
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Exercise 1

PEUSS 2011/2012 FTA Page 33

One
Possible
Solution

PEUSS 2011/2012 FTA Page 34
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RBD of an engine

PEUSS 2011/2012 FTA Page 35

Ignition system 2

Ignition system 1

CarburettorFuel system

Fuel
pump

Fuel
filter Jet

Other
components

LV HV

LV HV

PEUSS 2011/2012 FTA Page 36



Important Probability Distributions
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Important Distributions. . .

Certain probability distributions occur with such regular-

ity in real-life applications that they have been given their

own names. Here, we survey and study basic properties

of some of them.

We will discuss the following distributions:

• Binomial

• Poisson

• Uniform

• Normal

• Exponential

The first two are discrete and the last three continuous.

1



Binomial Distribution. . .

Consider the following scenarios:

— The number of heads/tails in a sequence of coin flips

— Vote counts for two different candidates in an election

— The number of male/female employees in a company

— The number of accounts that are in compliance or not

in compliance with an accounting procedure

— The number of successful sales calls

— The number of defective products in a production run

— The number of days in a month your company’s com-

puter network experiences a problem

All of these are situations where the binomial distribution

may be applicable.
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Canonical Framework. . .

There is a set of assumptions which, if valid, would lead

to a binomial distribution. These are:

• A set of n experiments or trials are conducted.

• Each trial could result in either a success or a failure.

• The probability p of success is the same for all trials.

• The outcomes of different trials are independent.

• We are interested in the total number of successes in

these n trials.

Under the above assumptions, let X be the total number

of successes. Then, X is called a binomial random

variable, and the probability distribution of X is called

the binomial distribution.

3



Binomial Probability-Mass Function. . .

Let X be a binomial random variable. Then, its probability-

mass function is:

P (X = x) =
n!

x!(n − x)!
px(1 − p)n−x (1)

for x = 0, 1, 2, . . . , n.

The values of n and p are called the parameters of the

distribution.

To understand (1), note that:

• The probability for observing any sequence of n in-

dependent trials that contains x successes and n − x

failures is pn(1 − p)n−x.

• The total number of such sequences is equal to
(

n

x

)

≡ n!

x!(n − x)!

(i.e., the total number of possible combinations when

we randomly select x objects out of n objects).
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Example: Multiple-Choice Exam

Consider an exam that contains 10 multiple-choice ques-

tions with 4 possible choices for each question, only

one of which is correct.

Suppose a student is to select the answer for every ques-

tion randomly. Let X be the number of questions the

student answers correctly. Then, X has a binomial

distribution with parameters n = 10 and p = 0.25.

(Convince yourself that all assumptions for a binomial

distribution are reasonable in this setting.)

What is the probability for the student to get no answer

correct? Answer:

P (X = 0) =
10!

0!(10 − 0)!
(0.25)0(1 − 0.25)10−0

= (0.75)10

= 0.0563

5



What is the probability for the student to get two an-

swers correct? Answer:

P (X = 2) =
10!

2!8!
(0.25)2(1 − 0.25)8

= 45 · (0.25)2 · (0.75)8

= 0.2816

What is the probability for the student to fail the test

(i.e., to have less than 6 correct answers)? Answer:

P (X ≤ 5) =

5
∑

i=0

P (X = i)

= 0.0563 + 0.1877 + 0.2816 + 0.2503

+0.1460 + 0.0584

= 0.9803

Binomial probabilities can be computed using the Excel

function BINOMDIST(). Two other examples are given

in a separate Excel file.
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Binomial Mean and Variance. . .

It can be shown that

µ = E(X) = np

and

σ2 = V (X) = np(1 − p) .

For the previous example, we have

• E(X) = 10 · 0.25 = 2.5.

• V (X) = 10 · (0.25) · (1 − 0.25) = 1.875.
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Poisson Distribution. . .

The Poisson distribution is another family of distributions

that arises in a great number of business situations. It

usually is applicable in situations where random “events”

occur at a certain rate over a period of time.

Consider the following scenarios:

— The hourly number of customers arriving at a bank

— The daily number of accidents on a particular stretch

of highway

— The hourly number of accesses to a particular web

server

— The daily number of emergency calls in Dallas

— The number of typos in a book

— The monthly number of employees who had an ab-

sence in a large company

— Monthly demands for a particular product

All of these are situations where the Poisson distribution

may be applicable.

8



Canonical Framework. . .

Like the Binomial distribution, the Poisson distribution

arises when a set of canonical assumptions are reasonably

valid. These are:

• The number of events that occur in any time interval

is independent of the number of events in any other

disjoint interval. Here, “time interval” is the standard

example of an “exposure variable” and other interpre-

tations are possible. Example: Error rate per page in

a book.

• The distribution of number of events in an interval is

the same for all intervals of the same size.

• For a “small” time interval, the probability of observ-

ing an event is proportional to the length of the inter-

val. The proportionality constant corresponds to the

“rate” at which events occur.

• The probability of observing two or more events in

an interval approaches zero as the interval becomes

smaller.
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Under the above assumptions, let λ be the rate at which

events occur, t be the length of a time interval, and X be

the total number of events in that time interval. Then, X

is called a Poisson random variable and the proba-

bility distribution of X is called the Poisson distrib-

ution.

Let µ ≡ λt; then, µ can be interpreted as the average, or

mean, number of events in an interval of length t.

10



Poisson Probability-Mass Function. . .

Let X be a Poisson random variable. Then, its probability-

mass function is:

P (X = x) = e−µ µx

x!
(2)

for x = 0, 1, 2, . . . .

The value of µ is the parameter of the distribution. For

a given time interval of interest, in an application, µ can

be specified as λ times the length of that interval.

Example: Typos

The number of typographical errors in a “big” textbook

is Poisson distributed with a mean of 1.5 per 100

pages.

Suppose 100 pages of the book are randomly selected.

What is the probability that there are no typos? An-

swer:

P (X = 0) = e−µ µx

x!
= e−1.5 1.50

0!
= 0.2231

11



Suppose 400 pages of the book are randomly selected.

What are the probabilities for having no typos and

for having five or fewer typos? Answers:

P (X = 0) = e−1.5·4 (1.5 · 4)0

0!

= 0.002479

and

P (X ≤ 5) =
5

∑

i=0

P (X = i)

= 0.0025 + 0.0149 + 0.0446 + 0.0892

+0.1339 + 0.1606

= 0.4457

Poisson probabilities can be computed using the Excel

function POISSON(). Further numerical examples of the

Poisson distribution are given in a separate Excel file.
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Mean and Variance

It can be shown that

E(X) = µ

and

V (X) = µ .

Interpretation of (2)

The form of (2) seems mysterious. The best way to un-

derstand it is via the binomial distribution.

Consider a time interval and divide it into n equally-sized

subintervals. Suppose n is very large so that either one

or zero event can occur in a subinterval. Suppose further

that the probability for an event to occur in a subinterval

is µ/n, independent of what occurs in other subintervals.

13



Under these assumptions, the total number of events, X ,

in that interval has a binomial distribution with parame-

ters n and µ/n. That is,

P (X = x) =
n!

x!(n − x)!

(µ

n

)x (

1 − µ

n

)n−x

(3)

for x = 0, 1, 2, . . . , n.

Note that E(X) = n ·(µ/n) = µ, suggesting that (3) and

(1) are “consistent.” Indeed, it can be shown that as n

approaches ∞, (3) becomes (2). This useful fact is called

Poisson approximation to the binomial distribution.

We will see several other examples of such limiting ap-

proximations in future chapters. They provide simple

and accurate approximations to otherwise unmanageable

expressions.
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General Continuous Distributions. . .

Recall that a continuous random variable or distribu-

tion is defined via a probability density function. Let

f(x) (nonnegative) be the density function of variable X .

Then, f(x) is the rate at which probability accumulates

in the neighborhood of x. In other words,

f(x) h ≈ P (x < X ≤ x + h)

when h (a positive number) is sufficiently small. It follows

from this rate interpretation that for any interval (x1, x2],

we have

P (x1 < X ≤ x2) =

∫ x2

x1

f(x) dx ; (4)

moreover, we must have
∫ ∞

−∞
f(x) dx = 1 .

Note that the probability for a continuous random vari-

able to assume any particular value is 0; this can be seen

by setting x1 = x2 in (4).
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Recall further that the integral of a function over an inter-

val is the area under that function over the given interval.

We can therefore visualize P (x1 < X ≤ x2) as the area

of the yellow region below:

f(x)

xx
1

x
2

16



For −∞ < x < ∞, the function

F (x) ≡ P (X ≤ x) =

∫ x

−∞
f(y) dy

(i.e., let x1 = −∞ and x2 = x in (4)) is called the

cumulative distribution function of X . F (x) can also

be used to describe a random variable, since f(x) is the

derivative of F (x).

Various probabilities of interest regarding a variable X

can all be computed via either f(x) or F (x).

We next discuss three important continuous distributions:

uniform, normal, and exponential.

17



Uniform Distribution. . .

The uniform distribution is the simplest example of a con-

tinuous probability distribution. A random variable X is

said to be uniformly distributed if its density function is

given by:

f(x) =
1

b − a
(5)

for −∞ < a ≤ x ≤ b < ∞.

Visually, we have

f(x)

xba

where the shaded region has area (b − a)[1/(b − a)] = 1

(width times height).
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The values a and b are the parameters of the uniform

distribution. It can be shown that

E(X) =
a + b

2
and V (X) =

(b − a)2

12
.

The standard uniform density has parameters a = 0 and

b = 1; and hence f(x) = 1 for 0 ≤ x ≤ 1 and 0 other-

wise. The Excel function RAND() “pretends” to generate

independent samples from this density function.
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Example: Gasoline Sales

Suppose the amount of gasoline sold daily at a service

station is uniformly distributed with a minimum of

2,000 gallons and a maximum of 5,000 gallons.

What is the probability that daily sales will fall between

2,500 gallons and 3,000 gallons? Answer:

P (2500 < X ≤ 3000) =
1

5000 − 2000
(3000 − 2500)

= 0.1667 .

Visually, we have

f(x)

x5,0002,000

and the answer corresponds to the area in blue.
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What is the probability that the service station will sell

at least 4,000 gallons? Answer:

P (X > 4000) =
1

5000 − 2000
(5000 − 4000)

= 0.3333 .

Visually, we have

f(x)

x5,0002,000

What is the probability that the service station will sell

exactly 2,500 gallons? Answer: P (X = 2500) = 0,

since the area of a “vertical line” at 2,500 is 0.

f(x)

x5,0002,000
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Normal Distribution. . .

The normal distribution is the most important distrib-

ution in statistics, since it arises naturally in numerous

applications. The key reason is that large sums of

(small) random variables often turn out to be normally

distributed; a more-complete discussion of this will be

given in Chapter 9.

A random variable X is said to have the normal distrib-

ution with parameters µ and σ if its density function is

given by:

f(x) =
1√

2π σ
exp

{

− 1

2

(

x − µ

σ

)2
}

(6)

for −∞ < x < ∞.

It can be shown that

E(X) = µ and V (X) = σ2 .

Thus, the normal distribution is characterized by a mean

µ and a standard deviation σ .
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A typical normal density curve looks like this:

Thus, the curve is bell shaped and is symmetric around

the mean µ. The standard deviation σ controls the “flat-

ness” of the curve.

Details . . .
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Increasing the mean shifts the density curve to the right

. . .

Increasing the standard deivation flattens the density

curve . . .
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Calculating Normal Probabilities. . .

A normal distribution whose mean is 0 and standard de-

viation is 1 is called the standard normal distribution.

In this case, the density function assumes the simpler

form:

f(x) =
1√
2π

e−x2/2 (7)

for −∞ < x < ∞.

Table 3 in Appendix B of the text can be used to cal-

culate probabilities associated with the standard normal

distribution. The Excel function NORMSDIST() (where

“S” is for “standard”) can also be used.

Denote by Z a random variable that follows the standard

normal distribution. Then, Table 3 gives the probability

P (0 < Z ≤ z) for any nonnegative value z; whereas

NORMSDIST() returns P (Z ≤ z) for any z from −∞
to ∞, i.e., values of the cumulative distribution function.

For general parameter values, the Excel function NOR-

MDIST() (without “S” in the middle) can be used di-

rectly. However, . . .
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A standard practice is to convert a normal random vari-

able X with arbitrary parameters µ and σ into a stan-

dardized normal random variable Z with parameters 0

and 1 via the transformation:

Z =
X − µ

σ
; (8)

this is illustrated in:

This shifts the mean 

of X to zero…

0

This changes the 
shape of the curve…

0
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Example 1: Build Time of Computers

Suppose the time required to build a computer is nor-

mally distributed with a mean of 50 minutes and a

standard deviation of 10 minutes.

What is the probability for the assembly time of a com-

puter to be between 45 and 60 minutes? Answer:

We wish to compute P (45 < X ≤ 60). To do this,

we first rewrite the event of interest into a form that is

in terms of a standardized variable Z = (X − 50)/10,

as follows.

P

(

45 − 50

10
<

X − 50

10
≤ 60 − 50

10

)

= P (−0.5 < Z ≤ 1) .

Next, observe that

P (−0.5 < Z ≤ 1) = P (Z ≤ 1) − P (Z ≤ −0.5) .

Using the Excel function NORMSDIST(), we find

that P (Z ≤ 1) = 0.8413 and P (Z ≤ −0.5) = 0.3085.

Hence, the answer is 0.8413 − 0.3085 = 0.5328 .

27



Table 3 can also be used for this calculation:

P (−0.5 < Z ≤ 1)

= P (−0.5 < Z ≤ 0) + P (0 < Z ≤ 1)

= P (0 < Z ≤ 0.5) + P (0 < Z ≤ 1)

= 0.1915 + 0.3414

= 0.5328 ,

where the first equality follows from

0

–.5 … 1

the second equality is due to the fact that the normal

density curve is symmetric, and the third equality is

from Table 3.

Is it reasonable to assume that the build time is nor-

mally distributed? Reasoning: The build time can be

thought of as the sum of times needed to build many

individual components.
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Example 2: Stock Returns

Suppose the return of an investment in a stock over a

given time period is normally distributed with a mean

of 10% and a standard deviation of 5%. Reasoning:

Price movement of a stock over the given period can

be thought of as the sum of a “long” sequence of small

movements.

What is the probability of losing money over the given

period? Answer: We wish to determine P (X ≤ 0).

Following the steps in the previous example, we obtain

P (X ≤ 0)

= P

(

X − 10

5
≤ 0 − 10

5

)

= P (Z ≤ −2)

= 0.02275 .
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What is the effect of doubling the standard deviation to

10? Answer: A similar calculation yields

P (X ≤ 0) = P

(

X − 10

10
≤ 0 − 10

10

)

= P (Z ≤ −1)

= 0.1587 ,

which is almost 7 times larger than the previous an-

swer. Thus, increasing the standard deviation in-

creases the probability of losing money. This reiter-

ates the fact that the standard deviation is a measure

of risk.

Example 3: Midterm Scores

Why did the frequency distribution of the Midterm scores

resemble a normal density curve? Reasoning: The to-

tal score of an exam is the sum of scores for many

individual problems/parts.
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Finding “z” for Given Probability. . .

Most of the calculations above are of the form: Find the

probability P (Z ≤ z) for a given value of z. Often times,

we are also interested in an inverse problem: Find the

value of zA such that the probability for Z to be greater

than zA equals a specified value A.

Formally, our question is: For what value of zA do we

have

P (Z > zA) = A ? (9)

This can be visualized as:

Questions like these will be relevant in statistical infer-

ence.
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Examples:

Find zA for A = 0.025 (or 2.5%). That is, what is z0.025?

Answer: Observe that

P (Z > z0.025) = 1 − P (Z ≤ z0.025) .

Area = .025

Observer further that

P (Z ≤ z0.025) = 1 − P (Z > z0.025)

= 1 − 0.025

= 0.975 ,

where the second equality follows from the definition

of z0.025.
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Hence, our problem is equivalent to that of finding

z0.025 such that P (Z ≤ z0.025) = 0.975 . That is, we

are interested in the inverse of a cumulative distrib-

ution function; this is similar to finding percentiles

using an ogive. The Excel function NORMSDIST()

(which is a cumulative distribution function) has an

inverse: NORMSINV(). Using this inverse function

with argument 0.975, we find that z0.025 = 1.96 .

For A = 0.05, we have z0.05 = 1.645.

For A = 0.01, we have z0.01 = 2.33.
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Exponential Distribution. . .

Another useful continuous distribution is the exponen-

tial distribution, which has the following probability

density function:

f(x) = λe−λx (10)

for x ≥ 0.

This family of distributions is characterized by a single

parameter λ, which is called the rate. Intuitively, λ can

be thought of as the instantaneous “failure rate” of a

“device” at any time t, given that the device has survived

up to t.

The exponential distribution is typically used to model

time intervals between “random events”. . .
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Examples:

— The length of time between telephone calls

— The length of time between arrivals at a service station

— The life time of electronic components, i.e., an inter-

failure time

An important fact is that when times between random

“events” follow the exponential distribution with rate λ,

then the total number of events in a time period of length

t follows the Poisson distribution with parameter λt.

If a random variable X is exponentially distributed with

rate λ, then it can be shown that

E(X) =
1

λ
and V (X) =

(

1

λ

)2

.
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For λ = 0.5, 1, and 2, the shapes of the expenential

density curve are:

Observe that the greater the rate, the faster the curve

drops. Or, the lower the rate, the flatter the curve.

Several useful formulas are:

P{X ≤ x} = 1 − e−λx

P{X > x} = e−λx

P{x1 < X ≤ x2} = e−λx1 − e−λx2

These correspond to the areas under the density curve to

the left of x, to the right of x, and between x1 and x2,

respectively.
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Example 1: Lifetime of a Battery

The lifetime X of an alkaline battery is exponentially

distributed with λ = 0.05 per hour.

What are the mean and standard deviation of the bat-

tery’s lifetime? Answer:

E(X) = SD(X) =
1

0.05
= 20 hours.

What are the probabilities for the battery to last between

10 and 15 hours and to last more than 20 hours? An-

swer:

P (10 < X ≤ 15) = e−0.05·10 − e−0.05·15 = 0.1341

P (X > 20) = e−0.05·20 = 0.3679

(The Excel function EXP() can be used for these cal-

culations.)
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Example 2: Arrivals at a Gas Station

The arrival rate of cars at a gas station is λ = 40 cus-

tomers per hour. (This is equivalent to saying that the

interarrival times are exponentially distributed with

rate 40 per hour.)

What is the probability of having no arrivals in a 5-

minute interval? Answer:

P (X >
5

60
) = e−40·(5/60) = 0.03567

What are the mean and variance of the number, N , of

arrivals in 5 minutes? Answer:

The variable N has a Poisson distribution with para-

meter µ = λt = 40 · (5/60) = 3.333. Hence,

E(N) = 3.333 and V (N) = 3.333 .

What is the probability for having 3 arrivals in a 5-

minute interval? Answer:

P (N = 3) = e−3.333 3.3333

3!
= 0.2202 .
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Purpose

The intent of this White Paper is to provide an understanding of MTBF and other product reliability 
methods. Understanding the methods for the lifecycle prediction for a product enables the customer 
to consider the tangible value of the product beyond set-features before purchasing it.

MTBF, MTTR, MTTF and FIT are reliability terms based on methods and procedures for lifecycle 
predictions for a product. Customers often must include reliability data when determining what 
product to buy for their application. MTBF (Mean Time Between Failure), MTTR (Mean Time To 
Repair), MTTF (Mean Time To Failure) and FIT (Failure In Time) are ways of providing a numeric 
value based on a compilation of data to quantify a failure rate and the resulting time of expected 
performance. The numeric value can be expressed using any measure of time, but hours is the 
most common unit in practice.
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MTBF, MTTR, MTTF & FIT
Explanation of Terms

Introduction
MTBF, MTTR, MTTF and FIT 

Mean Time Between Failure (MTBF) is a reliability term used to provide the amount of failures 
per million hours for a product. This is the most common inquiry about a product’s life span, and is 
important in the decision-making process of the end user. MTBF is more important for industries 
and integrators than for consumers. Most consumers are price driven and will not take MTBF into 
consideration, nor is the data often readily available. On the other hand, when equipment such as 
media converters or switches must be installed into mission critical applications, MTBF becomes 
very important. In addition, MTBF may be an expected line item in an RFQ (Request For Quote). 
Without the proper data, a manufacturer’s piece of equipment would be immediately disqualifi ed.

Mean Time To Repair (MTTR) is the time needed to repair a failed hardware module. In an op-
erational system, repair generally means replacing a failed hardware part.  Thus, hardware MTTR 
could be viewed as mean time to replace a failed hardware module. Taking too long to repair a prod-
uct drives up the cost of the installation in the long run, due to down time until the new part arrives 
and the possible window of time required to schedule the installation. To avoid MTTR, many com-
panies purchase spare products so that a replacement can be installed quickly. Generally, however, 
customers will inquire about the turn-around time of repairing a product, and indirectly, that can fall 
into the MTTR category.

Mean Time To Failure (MTTF) is a basic measure of reliability for non-repairable systems. It is the 
mean time expected until the fi rst failure of a piece of equipment. MTTF is a statistical value and 
is meant to be the mean over a long period of time and a large number of units. Technically, MTBF 
should be used only in reference to a repairable item, while MTTF should be used for non-repairable 
items. However, MTBF is commonly used for both repairable and non-repairable items.

Failure In Time (FIT) is another way of reporting MTBF. FIT reports the number of expected failures 
per one billion hours of operation for a device. This term is used particularly by the semiconductor 
industry but is also used by component manufacturers. FIT can be quantifi ed in a number of ways:  
1000 devices for 1 million hours or 1 million devices for 1000 hours each, and other combinations. 
FIT and CL (Confi dence Limits) are often provided together.  In common usage, a claim to 95% 
confi dence in something is normally taken as indicating virtual certainty. In statistics, a claim to 
95% confi dence simply means that the researcher has seen something occur that only happens 
one time in twenty or less. For example, component manufacturers will take a small sampling of a 
component, test x number of hours, and then determine if there were any failures in the test bed. 
Based on the number of failures that occur, the CL will then be provided as well.
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Reliability Methods & Standards

Several prediction methods over time have been developed to determine reliability, but the two 
standards most often used when compiling reliability data for media converters are: the MIL-HDBK-
217F Notice 2 (Military Handbook) and Bellcore TR332. The MIL-HDBK-217 encompasses two 
ways to predict reliability: Parts Count Prediction (used to predict the reliability of a product in its 
early development cycle) and Parts Stress Analysis Prediction (used later in the development cycle, 
as the product nears production).  This is how the famous “bathtub curve” so adeptly illustrates the 
unit failure in proportion to a period of time. Other methods are applicable to the telecom industry 
while still others are useful for analyzing how failure modes would impact a product. The challenge 
is choosing the method based on the product’s functionality.

MTBF 

When the failure rate needs to be as low as possible, especially for mission critical systems, 
for example, utilizing MTBF data to ensure maximum uptime for an installation. It is a common 
misconception, however, that the MTBF value is equivalent to the expected number of operating 
hours before a product fails, or the “service life”. There are several variables that can impact failures. 
Aside from component failures, customer use/installation can also result in failure. For example, if 
a customer misuses a product and then it malfunctions, should that be considered a failure? If a 
product is delivered DOA because it was not properly packaged, is that a failure? 

The MTBF is often calculated based on an algorithm that factors in all of a product’s components 
to reach the sum life cycle in hours. In reality, depreciation modes of the product could limit the life 
of the product much earlier due to some of the variables listed above. It is very possible to have a 
product with an extremely high MTBF, but an average or more realistic expected service life.

 
   MTBF =                           1                        
                                               FR1 + FR2 + FR3 + ...........FRn

where FR is the failure rate of each component of the system up to n components

MTBF is not just a simple formula. A person certifi ed and educated in calculating MTBF is a good 
investment. That person must review the MTBF for every component as well as other factors such 
as operating temperature range, storage temperature range, etc.
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Beyond the MTBF calculation, Quality Assurance Managers should track all reported fi eld failures 
as well as the root cause of those product failures to produce a true snapshot of a product’s service 
life. Since this process takes time, the MTBF and other predictions of reliability for a product are 
on-going. MTBF can be subject to change. For example, in 2006, RoHS (Restriction of Hazardous 
Substances) was mandated by the European Community. If a released product is re-developed in 
order to meet RoHS-compliancy, the entire calculation has to be performed again, since non-RoHS 
components may have a different life cycle than those that do meet the RoHS standard.

ISO-9001 can also effectively support MTBF. How? Companies that are ISO certifi ed agree to meet 
the goals of “zero defect” and “continual improvement”. With processes in place, a product is devel-
oped and tested in numerous ways, including submissions to lab certifi cations appropriate for the 
product. The result is that before a product is ever introduced into the market, it is as fl awless and 
as functional as it was intended to be.

Summary

Reliability methods such as MTTR, MTTF and FIT apply to products or to specifi c components. 
However, MTBF remains a basic measure of a systems’ reliability for most products. It is often 
debated, sometimes even rejected as no longer relevant, and overall, widely misunderstood. It is still 
regarded as a useful tool when considering the purchase and installation of a product. Remember, 
along with obtaining an MTBF value, ask questions regarding how current that information is and on 
what standards it is based on to ensure choosing the most appropriate product for your installation. 

About IMC Networks

IMC Networks is a leading ISO 9001 certifi ed manufacturer of optical networking and LAN/WAN 
connectivity solutions for enterprise, telecommunications and service provider applications. Found-
ed in 1988, with over one million products installed worldwide, IMC Networks offers a wide range 
of fi ber media and mode converters for a variety of applications. Solutions include managed and 
unmanaged fi ber to copper converters, TDM over fi ber extenders and advanced optical Ethernet 
demarcation devices. Select from a wide range of connectors (SC, ST, LC, RJ-45, and SFP), fi -
ber modes (single, multi), options for increasing fi ber capacity (Wavelength Division Multiplexing/
CWDM, single-strand fi ber), powering options (AC, DC, USB, Power over Ethernet) and extended 
temperature solutions.

Fiber Consulting Services

IMC Networks’ Fiber Consulting Services (FCS) assists network managers and system integrators 
with the design and development of fi ber-based networks.  Consulting services are free of charge.  
For more information about FCS, please contact us at fcs@imcnetworks.com  or call 800-624-1070 
(within the USA) or +1-949-465-3000 (outside the USA).

To learn more about IMC Networks and its products, please visit our website at 
http://www.imcnetworks.com 
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Preface 
 
Reliability Engineers are required to combine a practical understanding of science and 
engineering with statistics. The reliability engineer’s understanding of statistics is focused 
on the practical application of a wide variety of accepted statistical methods. Most 
reliability texts provide only a basic introduction to probability distributions or only provide 
a detailed reference to few distributions. Most texts in statistics provide theoretical detail 
which is outside the scope of likely reliability engineering tasks. As such the objective of 
this book is to provide a single reference text of closed form probability formulas and 
approximations used in reliability engineering.  
 
This book provides details on 22 probability distributions. Each distribution section 
provides a graphical visualization and formulas for distribution parameters, along with 
distribution formulas. Common statistics such as moments and percentile formulas are 
followed by likelihood functions and in many cases the derivation of maximum likelihood 
estimates. Bayesian non-informative and conjugate priors are provided followed by a 
discussion on the distribution characteristics and applications in reliability engineering. 
Each section is concluded with online and hardcopy references which can provide further 
information followed by the relationship to other distributions. 
 
The book is divided into six parts. Part 1 provides a brief coverage of the fundamentals of 
probability distributions within a reliability engineering context. Part 1 is limited to concise 
explanations aimed to familiarize readers.  For further understanding the reader is referred 
to the references. Part 2 to Part 6 cover Common Life Distributions, Univariate Continuous 
Distributions, Univariate Discrete Distributions and Multivariate Distributions respectively.  
 
The authors would like to thank the many students in the Reliability Engineering Program 
particularly Reuel Smith for proof reading.  
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1.1. Probability Theory 
 
1.1.1. Theory of Probability 

The theory of probability formalizes the representation of probabilistic concepts through a 
set of rules. The most common reference to formalizing the rules of probability is through 
a set of axioms proposed by Kolmogorov in 1933. Where 𝐸𝐸𝑖𝑖 is an event in the event space 
Ω =∪𝑖𝑖=1𝑛𝑛 𝐸𝐸𝑖𝑖 with 𝑛𝑛 different events.  
 

0 ≤ 𝑃𝑃(𝐸𝐸𝑖𝑖) ≤ 1 
 

𝑃𝑃(Ω) = 1  and   𝑃𝑃(𝜙𝜙) = 0 
 

𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2) = 𝑃𝑃(𝐸𝐸1) + 𝑃𝑃(𝐸𝐸2) 
 

When 𝐸𝐸1 and 𝐸𝐸2 are mutually exclusive. 
 
Other representations of uncertainty exist such as fuzzy logic and theory of evidence 
(Dempster-Shafer model) which do not follow the theory of probability but almost all 
reliability concepts are defined based on probability as the metric of uncertainty. For a 
justification of probability theory see (Singpurwalla 2006). 
 
1.1.2. Interpretations of Probability  

The two most common interpretations of probability are: 
 

• Frequency Interpretation. In the frequentist interpretation of probability, the 
probability of an event (failure) is defined as: 
 

𝑃𝑃(𝐾𝐾) = lim
𝑛𝑛→∞

𝑛𝑛𝑓𝑓
𝑛𝑛  

 
Also known as the classical approach, this interpretation assumes there exists a 
real probability of an event, 𝑝𝑝. The analyst uses the observed frequency of the 
event to estimate the value of 𝑝𝑝. The more historic events that have occurred, 
the more confident the analyst is of the estimation of 𝑝𝑝. This approach does have 
limitations, for instance when data from events are not available (e.g. no failures 
occur in a test) 𝑝𝑝 cannot be estimated and this method cannot incorporate “soft  
evidence” such as expert opinion. 
 

• Subjective Interpretation.  The subjective interpretation of probability is also 
known as the Bayesian school of thought. This method defines the probability of 
an event as degree of belief the analyst has on the occurrence of event. This 
means probability is a product of the analyst’s state of knowledge. Any evidence 
which would change the analyst’s degree of belief must be considered when 
calculating the probability (including soft evidence). The assumption is made that 
the probability assessment is made by a coherent person where any coherent 
person having the same state of knowledge would make the same assessment. 
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The subjective interpretation has the flexibility of including many types of 
evidence to assist in estimating the probability of an event. This is important in 
many reliability applications where the events of interest (e. g, system failure) are 
rare. 

 
1.1.3. Laws of Probability 

The following rules of logic form the basis  for many mathematical operations within the 
theory of probability. 
 
Let 𝑋𝑋 = 𝐸𝐸𝑖𝑖  and 𝑌𝑌 = 𝐸𝐸𝑗𝑗  be two events within the sample space Ω where 𝑖𝑖 ≠ 𝑗𝑗. 
 
Boolean Laws of probability are (Modarres et al. 1999, p.25): 
 

𝑋𝑋 ∪ 𝑌𝑌 = 𝑌𝑌 ∪ 𝑋𝑋 
𝑋𝑋 ∩ 𝑌𝑌 = 𝑌𝑌 ∩ 𝑋𝑋 

Commutative Law 

𝑋𝑋 ∪ (𝑌𝑌 ∪ 𝑍𝑍) = (𝑋𝑋 ∪ 𝑌𝑌) ∪ 𝑍𝑍 
𝑋𝑋 ∩ (𝑌𝑌 ∩ 𝑍𝑍) = (𝑋𝑋 ∩ 𝑌𝑌) ∩ 𝑍𝑍 

Associative Law 

𝑋𝑋 ∩ (𝑌𝑌 ∪ 𝑍𝑍) = (𝑋𝑋 ∩ 𝑌𝑌) ∪ (𝑋𝑋 ∩ 𝑍𝑍) Distributive Law 
𝑋𝑋 ∪ 𝑋𝑋 = 𝑋𝑋 
𝑋𝑋 ∩ 𝑋𝑋 = 𝑋𝑋 

Idempotent Law 

X ∪ X� = Ω 
X ∩ X� = Ø 

X�� = X 

Complementation Law 

(𝑋𝑋 ∪ 𝑌𝑌)���������� = 𝑋𝑋� ∩ 𝑌𝑌� 
(𝑋𝑋 ∩ 𝑌𝑌)���������� = 𝑋𝑋� ∪ 𝑌𝑌� 

De Morgan’s Theorem 

𝑋𝑋 ∪ (𝑋𝑋� ∩ 𝑌𝑌) = 𝑋𝑋 ∪ 𝑌𝑌  
 
Two events are mutually exclusive if: 

X ∩ Y = Ø, 𝑃𝑃(𝑋𝑋 ∩ 𝑌𝑌) = 0 
 
Two events are independent if one event 𝑌𝑌 occurring does not affect the probability of the 
second event 𝑋𝑋 occurring: 
 

𝑃𝑃(𝑋𝑋|𝑌𝑌) = 𝑃𝑃(𝑋𝑋) 
 
The rules for evaluating the probability of compound events are: 
 
Addition Rule: 

𝑃𝑃(𝑋𝑋 ∪ 𝑌𝑌) = 𝑃𝑃(𝑋𝑋) + 𝑃𝑃(𝑌𝑌) − 𝑃𝑃 (𝑋𝑋 ∩ 𝑌𝑌) 
= 𝑃𝑃(𝑋𝑋) + 𝑃𝑃(𝑌𝑌) − 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌|𝑋𝑋) 

 
Multiplication Rule: 

𝑃𝑃(𝑋𝑋 ∩ 𝑌𝑌) = 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑌𝑌) 
 
When 𝑋𝑋 and 𝑌𝑌 are independent: 

𝑃𝑃(𝑋𝑋 ∪ 𝑌𝑌) = 𝑃𝑃(𝑋𝑋) + 𝑃𝑃(𝑌𝑌) − 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌) 
𝑃𝑃(𝑋𝑋 ∩ 𝑌𝑌) = 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑌𝑌) 
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Generalizations of these equations: 
𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2 ∪ …∪ 𝐸𝐸𝑛𝑛) = [𝑃𝑃(𝐸𝐸1) + 𝑃𝑃(𝐸𝐸2) + ⋯+ 𝑃𝑃(𝐸𝐸𝑛𝑛)]  
                                              − [𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2) + 𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸3) + ⋯+ 𝑃𝑃(𝐸𝐸𝑛𝑛−1 ∩ 𝐸𝐸𝑛𝑛)]  
                                              + [𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸3) + 𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸4) + ⋯ ]   
                                               −⋯ (−1)𝑛𝑛+1[𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2 ∩ …∩ 𝐸𝐸𝑛𝑛)] 

 
𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2 ∩ …∩ 𝐸𝐸𝑛𝑛) =𝑃𝑃(𝐸𝐸1) .𝑃𝑃(𝐸𝐸2|𝐸𝐸1).𝑃𝑃(𝐸𝐸3|𝐸𝐸1 ∩ 𝐸𝐸2)  

                                     …  𝑃𝑃(𝐸𝐸𝑛𝑛|𝐸𝐸1 ∩ 𝐸𝐸2 ∩ …∩ 𝐸𝐸𝑛𝑛−1)   
 
1.1.4. Law of Total Probability 

The probability of 𝑋𝑋 can be obtained by the following summation;  
 

𝑃𝑃(𝑋𝑋) = �𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝑋𝑋|𝐴𝐴𝑖𝑖)
𝑛𝑛𝐴𝐴

𝑖𝑖=1

 

 
where 𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛𝐴𝐴} is a partition of the sample space, Ω, and all the elements of A 
are mutually exclusive, Ai ∩ Aj = Ø, and the union of all A elements cover the complete 
sample space, ∪𝑖𝑖=1

𝑛𝑛𝐴𝐴 𝐴𝐴𝑖𝑖 = Ω. 
 
For example: 

𝑃𝑃(𝑋𝑋) = 𝑃𝑃(𝑋𝑋 ∩ 𝑌𝑌) + 𝑃𝑃(𝑋𝑋 ∩ 𝑌𝑌�) 
= 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑌𝑌) + 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑌𝑌�) 

 
1.1.5. Bayes’ Law 

Bayes’ law, can be derived from the multiplication rule and the law of total probability as 
follows: 
 

𝑃𝑃(𝜃𝜃)𝑃𝑃(𝐸𝐸|𝜃𝜃) = 𝑃𝑃(𝐸𝐸)𝑃𝑃(𝜃𝜃|𝐸𝐸) 
 

𝑃𝑃(𝜃𝜃|𝐸𝐸) =
𝑃𝑃(𝜃𝜃)𝑃𝑃(𝐸𝐸|𝜃𝜃)

𝑃𝑃(𝐸𝐸)  

 

𝑃𝑃(𝜃𝜃|𝐸𝐸) =
𝑃𝑃(𝜃𝜃)𝑃𝑃(𝐸𝐸|𝜃𝜃)

∑ 𝑃𝑃(𝐸𝐸|𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃𝑖𝑖)𝑖𝑖
 

 
𝜃𝜃 the unknown of interest (UOI).  
 
𝐸𝐸    the observed random variable, evidence. 
 
𝑃𝑃(𝜃𝜃)    the prior state of knowledge about 𝜃𝜃 without the evidence. Also denoted as 

𝜋𝜋𝑜𝑜(𝜃𝜃).   
 
𝑃𝑃(𝐸𝐸|𝜃𝜃)    the likelihood of observing the evidence given the UOI. Also denoted as 

𝐿𝐿(𝐸𝐸|𝜃𝜃). 
 

 



Introduction  5 Prob Theory 

𝑃𝑃(𝜃𝜃|𝐸𝐸)    the posterior state of knowledge about 𝜃𝜃 given the evidence. Also denoted 
as 𝜋𝜋(𝜃𝜃|𝐸𝐸).  

 
∑ 𝑃𝑃(𝐸𝐸|𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃)𝑖𝑖  is the normalizing constant. 

 
Thus Bayes formula enables us to use a piece of evidence , 𝐸𝐸,  to make inference about 
the unobserved 𝜃𝜃 .  
 
The continuous form of Bayes’ Law can be written as: 

𝜋𝜋(𝜃𝜃|𝐸𝐸) =
𝜋𝜋𝑜𝑜(𝜃𝜃) 𝐿𝐿(𝐸𝐸|𝜃𝜃)

∫ 𝜋𝜋𝑜𝑜(𝜃𝜃) 𝐿𝐿(𝐸𝐸|𝜃𝜃) 𝑑𝑑𝜃𝜃
 

 
In Bayesian statistics the state of knowledge (uncertainty) of an unknown of interest is 
quantified by assigning a probability distribution to its possible values. Bayes’ law provides 
a mathematical means by which this uncertainty can be updated given new evidence.  
 
 
1.1.6. Likelihood Functions 

The likelihood function is the probability of observing the evidence (e.g., sample data), 𝐸𝐸, 
given the distribution parameters, 𝜃𝜃. The probability of observing events is the product of 
each event likelihood:  
 

𝐿𝐿(𝜃𝜃|𝐸𝐸) = 𝑐𝑐�𝐿𝐿(𝜃𝜃|𝑡𝑡𝑖𝑖)
𝑖𝑖

 

 
𝑐𝑐 is a combinatorial constant which quantifies the number of combination which the 
observed evidence could have occurred. Methods which use the likelihood function in 
parameter estimation do not depend on the constant and so it is omitted.  
 
The following table summarizes the likelihood functions for different types of observations: 
 

Table 1: Summary of Likelihood Functions (Klein & Moeschberger 2003, p.74) 
Type of Observation Likelihood Function Example Description 

Exact Lifetimes 𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) = 𝑓𝑓(𝑡𝑡𝑖𝑖|𝜃𝜃) Failure time is known 

Right Censored 𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) = 𝑅𝑅(𝑡𝑡𝑖𝑖|𝜃𝜃) Component survived to time 𝑡𝑡𝑖𝑖 

Left Censored 𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) = 𝐹𝐹(𝑡𝑡𝑖𝑖|𝜃𝜃) Component failed before time 𝑡𝑡𝑖𝑖 

Interval Censored 𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) = 𝐹𝐹(𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅|𝜃𝜃) − 𝐹𝐹(𝑡𝑡𝑖𝑖𝐿𝐿𝑅𝑅|𝜃𝜃) Component failed between 
 𝑡𝑡𝑖𝑖𝐿𝐿𝑅𝑅  and  𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅 

Left Truncated 
𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) =

𝑓𝑓(𝑡𝑡𝑖𝑖|𝜃𝜃)
𝑅𝑅(𝑡𝑡𝐿𝐿|𝜃𝜃) 

Component failed at time 𝑡𝑡𝑖𝑖 where 
observations are truncated before 𝑡𝑡𝐿𝐿. 

Right Truncated 
𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) =

𝑓𝑓(𝑡𝑡𝑖𝑖|𝜃𝜃)
𝐹𝐹(𝑡𝑡𝑈𝑈|𝜃𝜃) 

Component failed at time 𝑡𝑡𝑖𝑖 where 
observations are truncated after 𝑡𝑡𝑈𝑈. 

Interval Truncated 
𝐿𝐿𝑖𝑖(𝜃𝜃|𝑡𝑡𝑖𝑖) =

𝑓𝑓(𝑡𝑡𝑖𝑖|𝜃𝜃)
𝐹𝐹(𝑡𝑡𝑈𝑈|𝜃𝜃) − 𝐹𝐹(𝑡𝑡𝐿𝐿|𝜃𝜃) 

Component failed at time 𝑡𝑡𝑖𝑖 where 
observations are truncated before 𝑡𝑡𝐿𝐿 
and after 𝑡𝑡𝑈𝑈. 
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The Likelihood function is used in Bayesian inference and maximum likelihood parameter 
estimation techniques. In both instances any constant in front of the likelihood function 
becomes irrelevant. Such constants are therefore not included in the likelihood functions 
given in this book (nor in most references).  
 
For example, consider the case where a test is conducted on 𝑛𝑛 components with an 
exponential time to failure distribution. The test is terminated at 𝑡𝑡𝑠𝑠 during which 𝑟𝑟 
components failed at times 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟 and 𝑠𝑠 = 𝑛𝑛 − 𝑟𝑟 components survived. Using the 
exponential distribution to construct the likelihood function we obtain: 
 

𝐿𝐿(𝜆𝜆|𝐸𝐸) = �𝑓𝑓�𝜆𝜆�𝑡𝑡𝑖𝑖𝐹𝐹�
𝑛𝑛𝐹𝐹

𝑖𝑖=1

�𝑅𝑅�𝜆𝜆�𝑡𝑡𝑖𝑖𝑆𝑆�
𝑛𝑛𝑆𝑆

𝑖𝑖=1

 

  

= �𝜆𝜆𝑒𝑒−𝜆𝜆𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹

𝑖𝑖=1

�𝑒𝑒−𝜆𝜆𝑡𝑡𝑖𝑖
𝑆𝑆

𝑛𝑛𝑆𝑆

𝑖𝑖=1

 

  
= 𝜆𝜆𝑛𝑛𝐹𝐹𝑒𝑒−𝜆𝜆∑ 𝑡𝑡𝑖𝑖

𝐹𝐹𝑛𝑛𝐹𝐹
𝑖𝑖=1 𝑒𝑒−λ∑ 𝑡𝑡𝑖𝑖

𝑆𝑆𝑛𝑛𝑆𝑆
𝑖𝑖=1  

  
= 𝜆𝜆𝑛𝑛𝐹𝐹𝑒𝑒−𝜆𝜆�∑ 𝑡𝑡𝑖𝑖

𝐹𝐹𝑛𝑛𝐹𝐹
𝑖𝑖=1 +∑ 𝑡𝑡𝑖𝑖

𝑆𝑆𝑛𝑛𝑆𝑆
𝑖𝑖=1 � 

 
Alternatively, because the test described is a homogeneous Poisson process1 the 
likelihood function could also have been constructed using a Poisson distribution. The 
data can be stated as seeing r failure in time 𝑡𝑡𝑇𝑇 where 𝑡𝑡𝑇𝑇 is the total time on test 𝑡𝑡𝑇𝑇 =
∑ 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1 + ∑ 𝑡𝑡𝑖𝑖𝑆𝑆

𝑛𝑛𝑆𝑆
𝑖𝑖=1 . Therefore the likelihood function would be: 

𝐿𝐿(𝜆𝜆|𝐸𝐸) = 𝑓𝑓(𝜆𝜆|𝑛𝑛𝐹𝐹 , 𝑡𝑡𝑇𝑇) 
  

=
(𝜆𝜆𝑡𝑡𝑇𝑇)𝑛𝑛𝐹𝐹
𝑛𝑛𝐹𝐹!  𝑒𝑒−𝜆𝜆𝑡𝑡𝑇𝑇 

  
= 𝑐𝑐𝜆𝜆𝑛𝑛𝐹𝐹𝑒𝑒−𝜆𝜆𝑡𝑡𝑇𝑇  

  
= 𝜆𝜆𝑛𝑛𝐹𝐹𝑒𝑒−𝜆𝜆�∑ 𝑡𝑡𝑖𝑖

𝐹𝐹+∑ 𝑡𝑡𝑖𝑖
𝑆𝑆𝑛𝑛𝑆𝑆

𝑖𝑖=1
𝑛𝑛𝐹𝐹
𝑖𝑖=1 � 

 
As mentioned earlier, in estimation procedures within this book, the constant 𝑐𝑐 can be 
ignored. As such, the two likelihood functions are equal. For more information see (Meeker 
& Escobar 1998, p.36) or (Rinne 2008, p.403). 
 
1.1.7. Fisher Information Matrix 

The Fisher Information Matrix has many uses but in reliability applications it is most often 
used to create Jeffery’s non-informative priors. There are two types of Fisher information 
matrices, the Expected Fisher Information Matrix 𝐼𝐼(𝜃𝜃),  and the Observed Fisher 
Information Matrix  𝐽𝐽(𝜃𝜃). 
                                                           
1 Homogeneous in time, where it does not matter if you have 𝑛𝑛 components on test at 
once (exponential test), or you have a single component on test which is replaced after 
failure 𝑛𝑛 times (Poisson process), the evidence produced will be the same.  
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The Expected Fisher Information Matrix is obtained from a log-likelihood function from a 
single random variable. The random variable is replaced by its expected value.  
 
For a single parameter distribution: 

𝐼𝐼(𝜃𝜃) = −𝐸𝐸 �
𝜕𝜕2Λ(𝜃𝜃|𝑥𝑥)
𝜕𝜕𝜃𝜃2 � = ��

𝜕𝜕Λ(𝜃𝜃|𝑥𝑥)
𝜕𝜕𝜃𝜃 �

2

� 

 
where Λ is the log-likelihood function and 𝐸𝐸[𝑈𝑈] = ∫ 𝑈𝑈𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥. For a distribution with 𝑝𝑝 
parameters the Expected Fisher Information Matrix is: 
 

𝐼𝐼(𝜽𝜽) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝐸𝐸 �

𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃12

� −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃2

�

−𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃2𝜕𝜕𝜃𝜃1

� −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃22

�

⋯ −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃𝑝𝑝

�

⋯ −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃2𝜕𝜕𝜃𝜃𝑝𝑝

�

⋮ ⋮

−𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃𝑝𝑝𝜕𝜕𝜃𝜃1

� −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃𝑝𝑝𝜕𝜕𝜃𝜃2

�

⋱ ⋮

… −𝐸𝐸 �
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙)
𝜕𝜕𝜃𝜃𝑝𝑝2

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The Observed Fisher Information Matrix is obtained from a likelihood function constructed 
from 𝑛𝑛 observed samples from the distribution. The expectation term is dropped.  
 
For a single parameter distribution: 
 

𝐽𝐽𝑛𝑛(𝜃𝜃) = −�
𝜕𝜕2Λ(𝜃𝜃|𝑥𝑥𝑖𝑖)

𝜕𝜕𝜃𝜃2

𝑛𝑛

𝑖𝑖=1

 

 
For a distribution with 𝑝𝑝 parameters the Observed Fisher Information Matrix is: 
 

𝐽𝐽𝑛𝑛(𝜽𝜽) = �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃12

−
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃2

−
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃2𝜕𝜕𝜃𝜃1

−
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)

𝜕𝜕𝜃𝜃22

⋯ −
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃𝑝𝑝

⋯ −
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃2𝜕𝜕𝜃𝜃𝑝𝑝

⋮ ⋮

−
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃𝑝𝑝𝜕𝜕𝜃𝜃1

−
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)
𝜕𝜕𝜃𝜃𝑝𝑝𝜕𝜕𝜃𝜃2

⋱ ⋮

… −
𝜕𝜕2Λ(𝜽𝜽|𝒙𝒙𝑾𝑾)

𝜕𝜕𝜃𝜃𝑝𝑝2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑛𝑛

𝑖𝑖=1

 

 
It can be seen that as 𝑛𝑛 becomes large, the average value of the random variable 
approaches its expected value and so the following asymptotic relationship exists 
between the observed and expected Fisher information matrices: 
 

plim
𝑛𝑛→∞

  
1
𝑛𝑛 𝐽𝐽𝑛𝑛

(𝜽𝜽) = 𝐼𝐼(𝜽𝜽) 

 
For large n the following approximation can be used: 
  

𝐽𝐽𝑛𝑛 ≈ 𝑛𝑛𝐼𝐼(𝜽𝜽) 
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When evaluated at 𝜽𝜽 = 𝜽𝜽� the observed Fisher information matrix estimates the variance-
covariance matrix:  

 

𝑽𝑽 = �𝐽𝐽𝑛𝑛(𝜽𝜽 = 𝜽𝜽�)�−1 =

⎣
⎢
⎢
⎡ 𝑉𝑉𝑉𝑉𝑟𝑟(𝜃𝜃�1) 𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�1,𝜃𝜃�2)
𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�1,𝜃𝜃�2) 𝑉𝑉𝑉𝑉𝑟𝑟(𝜃𝜃�2)

⋯ 𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�1,𝜃𝜃�𝑑𝑑)
⋯ 𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�2,𝜃𝜃�𝑑𝑑)

⋮ ⋮
𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�1,𝜃𝜃�𝑑𝑑) 𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃�2,𝜃𝜃�𝑑𝑑)

⋱ ⋮
… 𝑉𝑉𝑉𝑉𝑟𝑟(𝜃𝜃�𝑑𝑑) ⎦

⎥
⎥
⎤
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1.2. Distribution Functions 
 
1.2.1. Random Variables 

Probability distributions are used to model random events for which the outcome is 
uncertain such as the time of failure for a component. Before placing a demand on that 
component, the time it will fail is unknown. The distribution of the probability of failure at 
different times is modeled by a probability distribution. In this book random variables will 
be denoted as capital letter such as 𝑇𝑇 for time. When the random variable assumes a 
value we denote this by small caps such as 𝑡𝑡 for time. For example, if we wish to find the 
probability that the component fails before time 𝑡𝑡1 we would find  𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡1).  
 
Random variables are classified as either discrete or continuous. In a discrete distribution, 
the random variable can take on a distinct or countable number of possible values such 
as number of demands to failure. In a continuous distribution the random variable is not 
constrained to distinct possible values such as time-to-failure distribution. 
 
This book will denote continuous random variables as 𝑋𝑋 or 𝑇𝑇, and discrete random 
variables as 𝐾𝐾. 
 
1.2.2. Statistical Distribution Parameters 

The parameters of a distribution are the variables which need to be specified in order to 
completely specify the distribution. Often parameters are classified by the effect they have 
on the distributions. Shape parameters define the shape of the distribution, scale 
parameters stretch the distribution along the random variable axis, and location 
parameters shift the distribution along the random variable axis. The reader is cautioned 
that the parameters for a distribution may change depending on the text. Therefore, before 
using formulas from other sources the parameterization need to be confirmed. 
 
Understanding the effect of changing a distribution’s parameter value can be a difficult 
task. At the beginning of each section a graph of the distribution is shown with varied 
parameters.  
 
1.2.3. Probability Density Function 

A probability density function (pdf), denoted as 𝑓𝑓(𝑡𝑡) is any function which is always 
positive and has a unit area:  
 

� 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
∞

−∞
= 1, �𝑓𝑓(𝑘𝑘)

𝑘𝑘

= 1 

 
  
 
 
 
The probability of an event occurring between limits a and b is the area under the pdf: 

𝑃𝑃(𝑉𝑉 ≤ 𝑇𝑇 ≤ 𝑏𝑏) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
= 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑉𝑉) 
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𝑃𝑃(𝑉𝑉 ≤ 𝐾𝐾 ≤ 𝑏𝑏) = �𝑓𝑓(𝑘𝑘)
𝑏𝑏

𝑖𝑖=𝑎𝑎

= 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑉𝑉 − 1) 

 
The instantaneous value of a discrete pdf at 𝑘𝑘𝑖𝑖 can be obtained by minimizing the limits 
to [𝑘𝑘𝑖𝑖−1, 𝑘𝑘𝑖𝑖]: 

𝑃𝑃(𝐾𝐾 = 𝑘𝑘𝑖𝑖) = 𝑃𝑃(𝑘𝑘𝑖𝑖 < 𝐾𝐾 ≤ 𝑘𝑘𝑖𝑖) = 𝑓𝑓(𝑘𝑘) 
 
The instantaneous value of a continuous pdf is infinitesimal. This result can be seen when 
minimizing the limits to [𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡]: 

𝑃𝑃(𝑇𝑇 = 𝑡𝑡) = lim
Δt→0

𝑃𝑃(𝑡𝑡 < 𝑇𝑇 ≤ 𝑡𝑡 + Δ𝑡𝑡) = lim
Δt→0

𝑓𝑓(𝑡𝑡).Δ𝑡𝑡 
 
Therefore the reader must remember that in order to calculate the probability of an event, 
an interval for the random variable must be used. Furthermore, a common 
misunderstanding is that a pdf cannot have a value above one because the probability of 
an event occurring cannot be greater than one. As can be seen above this is true for 
discrete distributions, only because Δ𝑘𝑘 = 1. However for continuous the case the pdf is 
multiplied by a small interval Δ𝑡𝑡, which ensures that the probability an event occurring 
within the interval Δ𝑡𝑡 is less than one. 
 

 
Figure 1: Left: continuous pdf, right: discrete pdf 

 
To derive the continuous pdf relationship to the cumulative density function (cdf), 𝐹𝐹(𝑡𝑡): 
 

lim
Δt→0

𝑓𝑓(𝑡𝑡).Δ𝑡𝑡 = lim
Δt→0

𝑃𝑃(𝑡𝑡 < 𝑇𝑇 ≤ 𝑡𝑡 + Δ𝑡𝑡) = lim
Δt→0

𝐹𝐹(𝑡𝑡 + Δ𝑡𝑡) − 𝐹𝐹(𝑡𝑡) = lim
Δt→0

Δ𝐹𝐹(𝑡𝑡) 
 

𝑓𝑓(𝑡𝑡) = lim
Δt→0

Δ𝐹𝐹(𝑡𝑡)
Δ𝑡𝑡 =

𝑑𝑑𝐹𝐹(𝑡𝑡)
𝑑𝑑𝑡𝑡  

 
The shape of the pdf can be obtained by plotting a normalized histogram of an infinite 
number of samples from a distribution. 
 
 
 
It should be noted when plotting a discrete pdf the points from each discrete value should 
not be joined. For ease of explanation using the area under the graph argument the step 

𝑝𝑝𝑑𝑑𝑓𝑓 

𝑡𝑡2 𝑡𝑡1 
𝑡𝑡 

𝑓𝑓(𝑡𝑡) 

𝑃𝑃(𝑡𝑡1 < 𝑇𝑇 ≤ 𝑡𝑡2) 

𝑘𝑘2 

𝑓𝑓(𝑘𝑘) 

𝑘𝑘1 
𝑘𝑘 

𝑃𝑃(𝑘𝑘1 < 𝐾𝐾 ≤ 𝑘𝑘2) 

𝑝𝑝𝑑𝑑𝑓𝑓 
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plot is intuitive but implies a non-integer random variable. Instead stem plots or column 
plots are often used. 

 
Figure 2: Discrete data plotting. Left stem plot. Right column plot. 

 
1.2.4. Cumulative Distribution Function 

The cumulative density function (cdf), denoted by 𝐹𝐹(𝑡𝑡) is the probability of the random 
event occurring before 𝑡𝑡, 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡). For a discrete cdf the height of each step is the pdf 
value 𝑓𝑓(𝑘𝑘𝑖𝑖). 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) = � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑡𝑡

−∞
, 𝐹𝐹(𝑘𝑘) = 𝑃𝑃(𝐾𝐾 ≤ 𝑘𝑘) = � 𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑘𝑘𝑖𝑖≤𝑘𝑘

 

 
The limits of the cdf for −∞ < 𝑡𝑡 < ∞ and 0 ≤ 𝑘𝑘 ≤ ∞ are given as: 
 

lim
𝑡𝑡→−∞

𝐹𝐹(𝑡𝑡) = 0 , 𝐹𝐹(−1) = 0 
 

lim
𝑡𝑡→∞

𝐹𝐹(𝑡𝑡) = 1 , lim
𝑘𝑘→∞

𝐹𝐹(𝑘𝑘) = 1 
 
The cdf can be used to find the probability of the random even occurring between two 
limits: 

𝑃𝑃(𝑉𝑉 ≤ 𝑇𝑇 ≤ 𝑏𝑏) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎
= 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑉𝑉) 

𝑃𝑃(𝑉𝑉 ≤ 𝐾𝐾 ≤ 𝑏𝑏) = �𝑓𝑓(𝑘𝑘)
𝑏𝑏

𝑖𝑖=𝑎𝑎

= 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑉𝑉 − 1) 

 

𝑓𝑓(𝑘𝑘) 

𝑘𝑘 

𝑓𝑓(𝑘𝑘) 

𝑘𝑘 
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Figure 3: Left: continuous cdf/pdf, right: discrete cdf/pdf 

 
 
1.2.5. Reliability Function 

The reliability function, also known as the survival function, is denoted as 𝑅𝑅(𝑡𝑡). It is the 
probability that the random event (time of failure) occurs after 𝑡𝑡. 
 

𝑅𝑅(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡), 𝑅𝑅(𝑘𝑘) = 𝑃𝑃(𝑇𝑇 > 𝑘𝑘) = 1 − 𝐹𝐹(𝑘𝑘) 

𝑅𝑅(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
∞

𝑡𝑡
, 𝑅𝑅(𝑘𝑘) = � 𝑓𝑓(𝑘𝑘𝑖𝑖)

∞

𝑖𝑖=𝑘𝑘+1

 

   
It should be noted that in most publications the discrete reliability function is defined as 
𝑅𝑅∗(𝑘𝑘) = 𝑃𝑃(𝑇𝑇 ≥ 𝑘𝑘) = ∑ 𝑓𝑓(𝑘𝑘)∞

𝑖𝑖=𝑘𝑘 . This definition results in 𝑅𝑅∗(𝑘𝑘) ≠ 1 − 𝐹𝐹(𝑘𝑘). Despite this 
problem it is the most common definition and is included in all the references in this book 
except (Xie, Gaudoin, et al. 2002) 
 

𝑝𝑝𝑑𝑑𝑓𝑓 

𝑡𝑡1 
𝑡𝑡 

𝑓𝑓(𝑡𝑡) 

𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡1) 

𝑐𝑐𝑑𝑑𝑓𝑓 

𝑡𝑡1 
𝑡𝑡 

𝐹𝐹(𝑡𝑡) 

𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡1) 

𝑓𝑓(𝑘𝑘) 

𝑘𝑘1 
𝑘𝑘 

𝑃𝑃(𝐾𝐾 ≤ 𝑘𝑘1) 

𝑝𝑝𝑑𝑑𝑓𝑓 

𝐹𝐹(𝑘𝑘) 

𝑘𝑘1 
𝑘𝑘 

𝑐𝑐𝑑𝑑𝑓𝑓 1 

𝐹𝐹(𝑘𝑘1) 

𝑃𝑃(𝐾𝐾 ≤ 𝑘𝑘1) 

1 

𝐹𝐹(𝑡𝑡1) 
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Figure 4: Left continuous cdf, right continuous survival function 
 
1.2.6. Conditional Reliability Function 

The conditional reliability function, denoted as 𝑚𝑚(𝑥𝑥) is the probability of the component 
surviving given that it has survived to time t.  

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + x)
𝑅𝑅(𝑡𝑡)

 

Where:  
     𝑡𝑡 is the given time for which we know the component survived. 
     𝑥𝑥 is new random variable defined as the time after 𝑡𝑡. 𝑥𝑥 = 0 at 𝑡𝑡.   
 
 
1.2.7. 100α% Percentile Function 

The 100α% percentile function is the interval [0, 𝑡𝑡𝛼𝛼] for which the area under the pdf is 𝛼𝛼.  
 

𝑡𝑡𝛼𝛼 = 𝐹𝐹−1(𝛼𝛼) 
 
1.2.8. Mean Residual Life 

The mean residual life (MRL), denoted as 𝑢𝑢(𝑡𝑡), is the expected life given the component 
has survived to time, 𝑡𝑡.  
 

𝑢𝑢(𝑡𝑡) = � 𝑅𝑅(𝑥𝑥|𝑡𝑡) 𝑑𝑑𝑥𝑥
∞

0
=

1
𝑅𝑅(𝑡𝑡)� 𝑅𝑅(𝑥𝑥) 𝑑𝑑𝑥𝑥

∞

𝑡𝑡
 

 
1.2.9. Hazard Rate 

The hazard function, denoted as h(t), is the conditional probability that a component fails 
in a small time interval, given that it has survived from time zero until the beginning of the 
time interval. For the continuous case the probability that an item will fail in a time interval 
given the item was functioning at time 𝑡𝑡 is: 
 

𝑐𝑐𝑑𝑑𝑓𝑓 

𝑡𝑡 

𝐹𝐹(𝑡𝑡) 

1 

0 

𝑠𝑠𝑢𝑢𝑟𝑟𝐶𝐶𝑖𝑖𝐶𝐶𝑉𝑉𝑠𝑠 𝑓𝑓𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝐶𝐶𝑛𝑛 

𝑡𝑡 

𝑅𝑅(𝑡𝑡) 

1 

0 
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𝑃𝑃(𝑡𝑡 < 𝑇𝑇 < 𝑡𝑡 + Δ𝑡𝑡|𝑇𝑇 > 𝑡𝑡) =
𝑃𝑃(𝑡𝑡 < 𝑇𝑇 < 𝑡𝑡 + Δ𝑡𝑡)

𝑃𝑃(𝑇𝑇 > 𝑡𝑡) =
𝐹𝐹(𝑡𝑡 + Δ𝑡𝑡) − 𝐹𝐹(𝑡𝑡)

𝑅𝑅(𝑡𝑡) =
Δ𝐹𝐹(𝑡𝑡)
𝑅𝑅(𝑡𝑡)  

 
By dividing the probability by Δ𝑡𝑡 and finding the limit as Δ𝑡𝑡 → 0 gives the hazard rate: 
 

ℎ(𝑡𝑡) = lim
Δ𝑡𝑡→0

𝑃𝑃(𝑡𝑡 < 𝑇𝑇 < 𝑡𝑡 + Δ𝑡𝑡|𝑇𝑇 > 𝑡𝑡)
Δ𝑡𝑡

= lim
Δ𝑡𝑡→0

Δ𝐹𝐹(𝑡𝑡)
Δ𝑡𝑡𝑅𝑅(𝑡𝑡)

=
𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡) 

 
The discrete hazard rate is defined as: (Xie, Gaudoin, et al. 2002) 
 

ℎ(𝑘𝑘) =
𝑃𝑃(𝐾𝐾 = 𝑘𝑘)
𝑃𝑃(𝐾𝐾 ≥ 𝑘𝑘) =

𝑓𝑓(𝑘𝑘)
𝑅𝑅(𝑘𝑘 − 1) 

 
This unintuitive result is due to a popular definition of 𝑅𝑅∗(𝑘𝑘) = ∑ 𝑓𝑓(𝑘𝑘)∞

𝑖𝑖=𝑘𝑘  in which case 
ℎ(𝑘𝑘) = 𝑓𝑓(𝑘𝑘)/𝑅𝑅∗(𝑘𝑘). This definition has been avoided because it violates the formula 
𝑅𝑅(𝑘𝑘) = 1 − 𝐹𝐹(𝑘𝑘). The discrete hazard rate cannot be used in the same way as a 
continuous hazard rate with the following differences (Xie, Gaudoin, et al. 2002): 
 

• ℎ(𝑘𝑘) is defined as a probability and so is bounded by [0,1]. 
• ℎ(𝑘𝑘)  is not additive for series systems. 
• For the cumulative hazard rate 𝐻𝐻(𝑘𝑘) = − ln[𝑅𝑅(𝑘𝑘)] ≠ ∑ ℎ(𝑘𝑘)𝑘𝑘

𝑖𝑖=0   
• When a set of data is analyzed using a discrete counterpart of the continuous 

distribution the values of the hazard rate do not converge.  
 

A function called the second failure rate has been proposed (Gupta et al. 1997): 
 

𝑟𝑟(𝑘𝑘) = ln
𝑅𝑅(𝑘𝑘 − 1)
𝑅𝑅(𝑘𝑘) = − ln[1 − ℎ(𝑘𝑘)] 

 
This function overcomes the previously mentioned limitations of the discrete hazard rate 
function and maintains the monotonicity property. For more information, the reader is 
referred to (Xie, Gaudoin, et al. 2002) 
 
Care should be taken not to confuse the hazard rate with the Rate of Occurrence of 
Failures (ROCOF). ROCOF is the probability that a failure (not necessarily the first) occurs 
in a small time interval. Unlike the hazard rate, the ROCOF is the absolute rate at which 
system failures occur and is not conditional on survival to time t. ROCOF is using in 
measuring the change in the rate of failures for repairable systems.   
 
1.2.10. Cumulative Hazard Rate 

The cumulative hazard rate, denoted as 𝐻𝐻(𝑡𝑡) an in the continuous case is the area under 
the hazard rate function. This function is useful to calculate average failure rates. 

𝐻𝐻(𝑡𝑡) = � ℎ(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

∞
= −ln [𝑅𝑅(𝑡𝑡)] 

𝐻𝐻(𝑘𝑘) = − ln[𝑅𝑅(𝑘𝑘)] 
 
For a discussion on the discrete cumulative hazard rate see hazard rate. 
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1.2.11. Characteristic Function 

The characteristic function of a random variable completely defines its probability 
distribution. It can be used to derive properties of the distribution from transformations of 
the random variable.  (Billingsley 1995) 
 
The characteristic function is defined as the expected value of the function exp (𝑖𝑖𝑖𝑖𝑥𝑥) where 
𝑥𝑥 is the random variable of the distribution with a cdf 𝐹𝐹(𝑥𝑥), 𝑖𝑖 is a parameter that can have 
any real value and 𝑖𝑖 = √−1: 
 

𝜑𝜑𝑋𝑋(𝑖𝑖) = 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 

= � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹(𝑥𝑥)  𝑑𝑑𝑥𝑥
∞

−∞
 

 
A useful property of the characteristic function is the sum of independent random variables 
is the product of the random variables characteristic function. It is often easier to use the 
natural log of the characteristic function when conducting this operation.  
 

𝜑𝜑𝑋𝑋+𝑌𝑌(𝑖𝑖) = 𝜑𝜑𝑋𝑋(𝑖𝑖)𝜑𝜑𝑌𝑌(𝑖𝑖) 
 

ln [𝜑𝜑𝑋𝑋+𝑌𝑌(𝑖𝑖)] = ln[𝜑𝜑𝑋𝑋(𝑖𝑖)] ln[𝜑𝜑𝑌𝑌(𝑖𝑖)] 
 
For example, the addition of two exponentially distributed random variables with the same 
𝜆𝜆 gives the gamma distribution with 𝑘𝑘 = 2: 
 

𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆), 𝑌𝑌~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆) 

𝜑𝜑𝑋𝑋(𝑖𝑖) =
𝑖𝑖𝜆𝜆

𝑖𝑖 + 𝑖𝑖𝜆𝜆 , 𝜑𝜑𝑌𝑌(𝑖𝑖) =
𝑖𝑖𝜆𝜆

𝑖𝑖 + 𝑖𝑖𝜆𝜆 
 

𝜑𝜑𝑋𝑋+𝑌𝑌(𝑖𝑖) = 𝜑𝜑𝑋𝑋(𝑖𝑖)𝜑𝜑𝑌𝑌(𝑖𝑖) 

=
−𝜆𝜆2

(𝑖𝑖 + 𝑖𝑖𝜆𝜆)2 

 
𝑋𝑋 + 𝑌𝑌~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘 = 1, 𝜆𝜆) 

 
This is the characteristic function of the gamma distribution with 𝑘𝑘 = 2. 
 
The moment generating function can be calculated from the characteristic function: 

𝜑𝜑𝑋𝑋(−𝑖𝑖𝑖𝑖) = 𝑀𝑀𝑋𝑋(𝑖𝑖) 
 
The 𝑛𝑛𝑡𝑡ℎ raw moment can be calculated by differentiating the characteristic function 𝑛𝑛 
times. For more information on moments see section 1.3.2. 
 

𝐸𝐸[𝑋𝑋𝑛𝑛] = 𝑖𝑖−𝑛𝑛𝜑𝜑𝑋𝑋
(𝑛𝑛)(0) 

= 𝑖𝑖−𝑛𝑛 �
𝑑𝑑𝑛𝑛

𝑑𝑑𝑖𝑖𝑛𝑛 𝜑𝜑𝑋𝑋(𝑖𝑖)� 
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1.2.12. Joint Distributions 

Joint distributions are multivariate distributions with, 𝑑𝑑 random variables (𝑑𝑑 > 1). An 
example of a bivariate distribution (𝑑𝑑 = 2) may be the distribution of failure for a vehicle 
tire which with random variables time, 𝑇𝑇, and distance travelled, 𝑋𝑋. The dependence 
between these two variables can be quantified in terms of correlation and covariance. See 
section 1.3.3 for more discussion. For more on properties of multivariate distributions see 
(Rencher 1997). The continuous and discrete random variables will be denoted as: 
 

𝒙𝒙 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑑𝑑

� , 𝒌𝒌 = �

𝑘𝑘1
𝑘𝑘2
⋮
𝑘𝑘𝑑𝑑

� 

 
Joint distributions can be derived from the conditional distributions. For the bivariate case 
with random variables 𝑥𝑥 and 𝑦𝑦: 
 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑦𝑦|𝑥𝑥)𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥|𝑦𝑦)𝑓𝑓(𝑦𝑦) 
 
For the more general case: 
 

𝑓𝑓(𝒙𝒙) = 𝑓𝑓(𝑥𝑥1|𝑥𝑥2, … , 𝑥𝑥𝑑𝑑)𝑓𝑓(𝑥𝑥2, … ,𝑥𝑥𝑑𝑑) 
          =  𝑓𝑓(𝑥𝑥1) 𝑓𝑓(𝑥𝑥2|𝑥𝑥1) … 𝑓𝑓(𝑥𝑥𝑛𝑛−1|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−2) 𝑓𝑓(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

 
If the random variables are independent, their joint distribution is simply the product of the 
marginal distributions: 
 

𝑓𝑓(𝒙𝒙) = �𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑥𝑥𝑖𝑖 ⊥ 𝑥𝑥𝑗𝑗𝑓𝑓𝐶𝐶𝑟𝑟 𝑖𝑖 ≠ 𝑗𝑗 

 

𝑓𝑓(𝒌𝒌) = �𝑓𝑓(𝑘𝑘𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑘𝑘𝑖𝑖 ⊥ 𝑘𝑘𝑗𝑗𝑓𝑓𝐶𝐶𝑟𝑟 𝑖𝑖 ≠ 𝑗𝑗 

 
A general multivariate cumulative probability function with n random variables 
(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛)  is defined as: 
 

𝐹𝐹(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) = 𝑃𝑃(𝑇𝑇1 ≤ 𝑡𝑡1,𝑇𝑇2 ≤ 𝑡𝑡2, … ,𝑇𝑇𝑛𝑛 ≤ 𝑡𝑡𝑛𝑛) 
 
The survivor function is given as: 
 

𝑅𝑅(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) = 𝑃𝑃(𝑇𝑇1 > 𝑡𝑡1,𝑇𝑇2 > 𝑡𝑡2, … ,𝑇𝑇𝑛𝑛 > 𝑡𝑡𝑛𝑛) 
 
Different from univariate distributions is the relationship between the CDF and the 
survivor function (Georges et al. 2001): 
 

𝐹𝐹(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) + 𝑅𝑅(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) ≤ 1 
 
 
If 𝐹𝐹(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) is differentiable then the probability density function is given as: 
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𝑓𝑓(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛) =
𝜕𝜕𝑛𝑛𝐹𝐹(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛)
𝜕𝜕𝑡𝑡1𝜕𝜕𝑡𝑡2 … 𝜕𝜕𝑡𝑡𝑛𝑛

 

 
 
For a discussion on the multivariate hazard rate functions and the construction of joint 
distributions from marginal distributions see (Singpurwalla 2006). 
 
 
1.2.13. Marginal Distribution 

The marginal distribution of a single random variable in a joint distribution can be obtained: 
 

𝑓𝑓(𝑥𝑥1) = � …� � 𝑓𝑓(𝒙𝒙) 𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥3 … 𝑑𝑑𝑥𝑥𝑑𝑑
𝑖𝑖2𝑖𝑖3𝑖𝑖𝑑𝑑

 

 
𝑓𝑓(𝑘𝑘1) = ��…

𝑘𝑘3

�𝑓𝑓(𝒌𝒌)
𝑘𝑘𝑛𝑛𝑘𝑘2

 

 
 
1.2.14. Conditional Distribution 

If the value is known for some random variables the conditional distribution of the 
remaining random variables is: 
 

𝑓𝑓(𝑥𝑥1|𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) =
𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) =
𝑓𝑓(𝑥𝑥)

∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥1 𝑖𝑖1

 

 

𝑓𝑓(𝑘𝑘1|𝑘𝑘2, … ,𝑘𝑘𝑑𝑑) =
𝑓𝑓(𝑘𝑘)

𝑓𝑓(𝑘𝑘2, … , 𝑘𝑘𝑑𝑑) =
𝑓𝑓(𝑘𝑘)

∑ 𝑓𝑓(𝑥𝑥)𝑘𝑘1
 

 
1.2.15. Bathtub Distributions 

Elementary texts on reliability introduce the hazard rate of a system as a bathtub curve. 
The bathtub curve has three regions, infant mortality (decreasing failure rate), useful life 
(constant failure rate) and wear out (increasing failure rate). Bathtub distributions have 
not been a popular choice for modeling life distributions when compared to exponential, 
Weibull and lognormal distributions. This is because bathtub distributions are generally 
more complex without closed form moments and more difficult to estimate parameters.  
 
Sometimes more complex shapes are required than simple bathtub curves, as such 
generalizations and modifications to the bathtub curves has been studied. These include 
an increase in the failure rate followed by a bathtub curve and rollercoaster curves 
(decreasing followed by unimodal hazard rate).  For further reading including 
applications see (Lai & Xie 2006). 
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1.2.16. Truncated Distributions 

Truncation arises when the existence of a potential observation would be unknown if it 
were to occur in a certain range. An example of truncation is when the existence of a 
defect is unknown due to the defect’s amplitude being less than the inspection threshold. 
The number of flaws below the inspection threshold is unknown.  This is not to be 
confused with censoring which occurs when there is a bound for observing events. An 
example of right censoring is when a test is time terminated and the failures of the 
surviving components are not observed, however we know how many components were 
censored. (Meeker & Escobar 1998, p.266) 
 
A truncated distribution is the conditional distribution that results from restricting the 
domain of another probability distribution.  The following general formulas apply to 
truncated distribution functions, where 𝑓𝑓0(𝑥𝑥) and 𝐹𝐹0(𝑥𝑥) are the pdf and cdf of the non-
truncated distribution. For further reading specific to common distributions see   (Cohen 
1991) 
 
Probability Distribution Function: 

𝑓𝑓(𝑥𝑥) = �
𝑓𝑓𝑜𝑜(𝑥𝑥)

𝐹𝐹0(𝑏𝑏) − 𝐹𝐹0(𝑉𝑉) 𝑓𝑓𝐶𝐶𝑟𝑟 𝑥𝑥 ∈ (𝑉𝑉,𝑏𝑏]

0 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
 

 
Cumulative Distribution Function: 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 0 𝑓𝑓𝐶𝐶𝑟𝑟 𝑥𝑥 ≤ 𝑉𝑉

∫ 𝑓𝑓0(𝑡𝑡)  𝑑𝑑𝑡𝑡𝑖𝑖
𝑎𝑎

𝐹𝐹0(𝑏𝑏) − 𝐹𝐹0(𝑉𝑉) 𝑓𝑓𝐶𝐶𝑟𝑟 𝑥𝑥 ∈ (𝑉𝑉, 𝑏𝑏] 

1 𝑓𝑓𝐶𝐶𝑟𝑟 𝑥𝑥 > 𝑏𝑏
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1.2.17. Summary 

Table 2: Summary of important reliability function relationships 

 𝒇𝒇(𝑩𝑩) 𝑭𝑭(𝑩𝑩) 𝑹𝑹(𝑩𝑩) 𝑾𝑾(𝑩𝑩) 𝑯𝑯(𝑩𝑩) 

𝒇𝒇(𝑩𝑩)  = --- 𝐹𝐹′(𝑡𝑡) −𝑅𝑅′(𝑡𝑡) ℎ(𝑡𝑡) exp �−� ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑡𝑡

𝑜𝑜
� −

𝑑𝑑{exp[−𝐻𝐻(𝑡𝑡)]}
𝑑𝑑𝑡𝑡

 

𝑭𝑭(𝑩𝑩)  = � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑡𝑡

0
 ---- 1 − 𝑅𝑅(𝑡𝑡) 1 − exp �−� ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥

𝑡𝑡

𝑜𝑜
� 

1− exp {−𝐻𝐻(𝑡𝑡)} 

𝑹𝑹(𝑩𝑩)  = 1−� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑡𝑡

0
 1 –  𝐹𝐹(𝑡𝑡) ---- exp �−� ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥

𝑡𝑡

𝑜𝑜
� 

exp {−𝐻𝐻(𝑡𝑡)} 

𝑾𝑾(𝑩𝑩)  = 
 

𝑓𝑓(𝑡𝑡)

1 − ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑡𝑡
0

 
𝐹𝐹′(𝑡𝑡)

1− 𝐹𝐹(𝑡𝑡)
  

𝑅𝑅′(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

 ---- 
𝐻𝐻′(𝑡𝑡) 

𝑯𝑯(𝑩𝑩) = −𝑠𝑠𝑛𝑛� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

𝑡𝑡
 ln �

1
1− 𝐹𝐹(𝑥𝑥)� −ln {𝑅𝑅(𝑥𝑥)} � ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥

𝑡𝑡

0
 

--- 

𝒖𝒖(𝑩𝑩) = 
∫ 𝑥𝑥𝑓𝑓(𝑡𝑡 + 𝑥𝑥)𝑑𝑑𝑥𝑥∞
0

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

 ∫
[1 − 𝐹𝐹(𝑥𝑥)]𝑑𝑑𝑥𝑥∞

𝑡𝑡
1 − 𝐹𝐹(𝑡𝑡)

 
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡
𝑅𝑅(𝑡𝑡)

 
∫ exp�−∫ ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥𝑡𝑡

𝑜𝑜 �𝑑𝑑𝑥𝑥∞
𝑡𝑡

exp�−∫ ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥𝑡𝑡
𝑜𝑜 �

 
∫ exp{−𝐻𝐻(𝑥𝑥)}𝑑𝑑𝑥𝑥∞
𝑡𝑡

exp{−𝐻𝐻(𝑥𝑥)}  
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1.3. Distribution Properties 
 
1.3.1. Median / Mode 

The median of a distribution, denoted as 𝑡𝑡0.5 is when the cdf and reliability function are 
equal to 0.5. 

𝑡𝑡0.5 = 𝐹𝐹−1(0.5) = 𝑅𝑅−1(0.5) 
  
The mode is the highest point of the pdf, 𝑡𝑡𝑚𝑚. This is the point where a failure has the 
highest probability. Samples from this distribution would occur most often around the 
mode. 
 
1.3.2. Moments of Distribution 

The moments of a distribution are given by: 
 

𝜇𝜇𝑛𝑛 = � (𝑥𝑥 − 𝑐𝑐)𝑛𝑛𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
, 𝜇𝜇𝑛𝑛 = ��𝑘𝑘𝑗𝑗 − 𝑐𝑐�𝑛𝑛𝑓𝑓(𝑘𝑘)

𝑖𝑖

 

When 𝑐𝑐 = 0 the moments, 𝜇𝜇𝑛𝑛′ , are called the raw moments, described as moments about 
the origin. In respect to probability distributions the first two raw moments are important. 
𝜇𝜇0′  always equals one, and 𝜇𝜇1′  is the distributions mean which is the expected value of the 
random variable for the distribution: 

𝜇𝜇′0 = � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
= 1, 𝜇𝜇′0 = �𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑖𝑖

= 1 

 
mean = 𝐸𝐸[𝑋𝑋] = 𝜇𝜇: 

𝜇𝜇′1 = � 𝑥𝑥𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
, 𝜇𝜇′1 = �𝑘𝑘𝑖𝑖𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑖𝑖

 

Some important properties of the expected value 𝐸𝐸[𝑋𝑋] when transformations of the 
random variable occur are: 

𝐸𝐸[𝑋𝑋 + 𝑏𝑏] = 𝜇𝜇𝑋𝑋 + 𝑏𝑏 
  
𝐸𝐸[𝑋𝑋 + 𝑌𝑌] = 𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌  
  
𝐸𝐸[𝑉𝑉𝑋𝑋] = 𝑉𝑉𝜇𝜇𝑋𝑋 

  
𝐸𝐸[𝑋𝑋𝑌𝑌] = 𝜇𝜇𝑋𝑋𝜇𝜇𝑌𝑌 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) 

 
When 𝑐𝑐 = 𝜇𝜇 the moments, 𝜇𝜇𝑛𝑛, are called the central moments, described as moments 
about the mean. In this book, the first five central moments are important. 𝜇𝜇0 is equal to 
𝜇𝜇0′ = 1.  𝜇𝜇1 is the variance which quantifies the amount the random variable deviates from 
the mean. 𝜇𝜇2 and 𝜇𝜇3 are used to calculate the skewness and kurtosis. 
 

𝜇𝜇0 = � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
= 1, 𝜇𝜇0 = �𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑖𝑖

= 1 

𝜇𝜇1 = � (𝑥𝑥 − 𝜇𝜇)𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
= 0, 𝜇𝜇1 = �(𝑘𝑘𝑖𝑖 − 𝜇𝜇)𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑖𝑖

= 0 
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variance = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] = 𝐸𝐸[𝑋𝑋2] − {𝐸𝐸[𝑋𝑋]}2 = 𝜎𝜎2: 
 

𝜇𝜇2 = � (𝑥𝑥 − 𝜇𝜇)2𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
, 𝜇𝜇2 = �(𝑘𝑘𝑖𝑖 − 𝜇𝜇)2𝑓𝑓(𝑘𝑘𝑖𝑖)

𝑖𝑖

 

 
Some important properties of the variance exist when transformations of the random 
variable occur are: 

𝑉𝑉𝑉𝑉𝑟𝑟[𝑋𝑋 + 𝑏𝑏] = 𝑉𝑉𝑉𝑉𝑟𝑟[𝑋𝑋] 
  
𝑉𝑉𝑉𝑉𝑟𝑟[𝑋𝑋 + 𝑌𝑌] = 𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 ± 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) 
  
𝑉𝑉𝑉𝑉𝑟𝑟[𝑉𝑉𝑋𝑋] = 𝑉𝑉2𝜎𝜎𝑋𝑋2 

  

𝑉𝑉𝑉𝑉𝑟𝑟[𝑋𝑋𝑌𝑌] = (𝑋𝑋𝑌𝑌)2 ��
𝜎𝜎𝑋𝑋
𝑋𝑋 �

2
+ �

𝜎𝜎𝑌𝑌
𝑌𝑌 �

2
+ 2

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝑋𝑋𝑌𝑌

� 

 
The skewness is a measure of the asymmetry of the distribution.  
 

𝛾𝛾1 =
𝜇𝜇3
𝜇𝜇2
3 2⁄  

 
The kurtosis is a measure of the whether the data is peaked or flat. 
 

𝛾𝛾2 =
𝜇𝜇4
𝜇𝜇22

 

1.3.3. Covariance 

Covariance is a measure of the dependence between random variables.  
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑌𝑌 − 𝜇𝜇𝑌𝑌)] = 𝐸𝐸[𝑋𝑋𝑌𝑌]− 𝜇𝜇𝑋𝑋𝜇𝜇𝑌𝑌 

 
A normalized measure of covariance is correlation, 𝜌𝜌. The correlation has the limits −1 ≤
𝜌𝜌 ≤ 1. When 𝜌𝜌 = 1 the random variables have a linear dependency (i.e, an increase in X 
will result in the same increase in Y). When 𝜌𝜌 = −1 the random variables have a negative 
linear dependency (i.e, an increase in X will result in the same decrease in Y). The 
relationship between covariance and correlation is: 

𝜌𝜌𝑋𝑋,𝑌𝑌 = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟(𝑋𝑋,𝑌𝑌) =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

 

 
If the two random variables are independent than the correlation is equal to zero, however 
the reverse is not always true. If the correlation is zero the random variables does not 
need to be independent. For derivations and more information the reader is referred to 
(Dekking et al. 2007, p.138). 
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1.4. Parameter Estimation 
 
1.4.1. Probability Plotting Paper 

Most plotting methods transform the data available into a straight line for a specific 
distribution. From a line of best fit the parameters of the distribution can be estimated. 
Most plotting paper plots the random variable (time or demands) against the pdf, cdf or 
hazard rate and transform the data points to a linear relationship by adjusting the scale of 
each axis. Probability plotting is done using the following steps (Nelson 1982, p.108): 
 
1. Order the data such that 𝑥𝑥1 ≤ 𝑥𝑥2 ≤ ⋯ ≤ 𝑥𝑥𝑖𝑖 ≤ ⋯ ≤ 𝑥𝑥𝑛𝑛. 
 
2. Assign a rank to each failure. For complete data this is simply the value i. Censored 
data is discussed after step 7.  
 
3. Calculate the plotting position. The cdf may simply be calculated as 𝑖𝑖/𝑛𝑛 however this 
produces a biased result, instead the following non-parametric Blom estimates, are 
recommended as suitable for many cases by (Kimball 1960): 

ℎ�(𝑡𝑡𝑖𝑖) =
1

(𝑛𝑛 − 𝑖𝑖 + 0.625)(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖)
 

  

𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖 − 0.375
𝑛𝑛 + 0.25  

  

𝑅𝑅�(𝑡𝑡𝑖𝑖) =
𝑛𝑛 − 𝑖𝑖 + 0.625

(𝑛𝑛 + 0.25)  

  

𝑓𝑓(𝑡𝑡𝑖𝑖) =
1

(𝑛𝑛 + 0.25)(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖)
 

 
Other proposed estimators are:  

Naive: 𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖
𝑛𝑛 

Median (approximate): 𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖 − 0.3
𝑛𝑛 + 0.4 

   

Midpoint: 𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖 − 0.5
𝑛𝑛  

   

Mean ∶  𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖

𝑛𝑛 + 1  
  

Mode: 𝐹𝐹�(𝑡𝑡𝑖𝑖) =
𝑖𝑖 − 1
𝑛𝑛 − 1  

 
4.  Plot points on probability paper. The choice of distribution should be from experience, 
or multiple distributions should be used to assess the best fit. Probability paper is available 
from http://www.weibull.com/GPaper/. 
 
 

http://www.weibull.com/GPaper/
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5. Assess the data and chosen distributions. If the data plots in straight line then the 
distribution may be a reasonable fit.  
 
6. Draw a line of best fit. This is a subjective assessment which minimizes the deviation 
of the points from the chosen line.  
 
7. Obtained the desired information. This may be the distribution parameters or estimates 
of reliability or hazard rate trends.  
 
When multiple failure modes are observed only one failure mode should be plotted with 
the other failures being treated as censored. Two popular methods to treat censored data 
two methods are: 
 
Rank Adjustment Method. (Manzini et al. 2009, p.140) Here the adjusted rank,  𝑗𝑗𝑡𝑡𝑖𝑖 is 
calculated only for non-censored units (with 𝑖𝑖𝑡𝑡𝑖𝑖 still being the rank for all ordered times). 
This adjusted rank is used for step 2 with the remaining steps unchanged: 

𝑗𝑗𝑡𝑡𝑖𝑖 = 𝑗𝑗𝑡𝑡𝑖𝑖−1 +
(𝑛𝑛 + 1) − 𝑗𝑗𝑡𝑡𝑖𝑖−1

2 + 𝑛𝑛 − 𝑖𝑖𝑡𝑡𝑖𝑖
 

 
Kaplan Meier Estimator. Here the estimate for reliability is: 

𝑅𝑅�(𝑡𝑡𝑖𝑖) = ��1 −
𝑑𝑑

𝑛𝑛 − 𝑖𝑖 + 1�
𝑡𝑡𝑗𝑗<𝑡𝑡𝑖𝑖

 

 
Where 𝑑𝑑 is the number of failures in rank j (for non-grouped data 𝑑𝑑 = 1). From this 
estimate a cdf can be given as 𝐹𝐹�(𝑡𝑡𝑖𝑖) = 1 − 𝑅𝑅�(𝑡𝑡𝑖𝑖). For a detailed derivation and properties 
of this estimator see (Andersen et al. 1996, p.255) 
 
Probability plots are fast and not dependent on complex numerical methods and can be 
used without a detailed knowledge of statistics. It provides a visual representation of the 
data for which qualitative statements can be made. It can be useful in estimating initial 
values for numerical methods. Limitation of this technique is that it is not objective and 
two different people making the same plot will obtain different answers. It also does not 
provide confidence intervals. For more detail of probability plotting the reader is referred 
to (Nelson 1982, p.104) and (Meeker & Escobar 1998, p.122) 
 
1.4.2. Total Time on Test Plots 

Total time on Test (TTT) plots is a graph which provides a visual representation of the 
hazard rate trend, i.e increasing, constant or decreasing. This assists in identifying the 
distribution from which the data may come from. To plot TTT (Rinne 2008, p.334): 
 
1. Order the data such that 𝑥𝑥1 ≤ 𝑥𝑥2 ≤ ⋯ ≤ 𝑥𝑥𝑖𝑖 ≤ ⋯ ≤ 𝑥𝑥𝑛𝑛. 
 
2.  Calculate the TTT positions: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = �(𝑛𝑛 − 𝑗𝑗 + 1)�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗−1�
𝑖𝑖

𝑗𝑗=1

; 𝑖𝑖 = 1,2, … ,𝑛𝑛 

 
3. Calculate the normalized TTT positions: 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖∗ =
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛

; 𝑖𝑖 = 1,2, … ,𝑛𝑛 

 
4. Plot the points �𝑖𝑖

𝑛𝑛
, 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖∗�. 

 
5. Analyze graph: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Time on test plot interpretation 

 
Compared to probability plotting, TTT plots are simple, scale invariant and can represent 
any data set even those from different distributions on the same plot. However it only 
provides an indication of failure rate properties and cannot be used directly to estimate 
parameters.  For more information about TTT plots the reader is referred to (Rinne 2008, 
p.334). 
 
1.4.3. Least Mean Square Regression 

When the relationship between two variables, 𝑥𝑥 and 𝑦𝑦 is assumed linear (𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐), an 
estimate of the line’s parameters can be obtained from 𝑛𝑛 sample data points, (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) using 
least mean square (LMS) regression. The least square method minimizes the square of 
the residual.  

𝑆𝑆 = �𝑟𝑟𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

  

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 

1 

1 𝑖𝑖 𝑛𝑛�  

0 

0 
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The residual can be defined in many ways.  
 

Minimize y residuals Minimize x residuals 
𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖;𝑚𝑚, 𝑐𝑐) 

 
𝑟𝑟𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑓𝑓(𝑦𝑦𝑖𝑖;𝑚𝑚, 𝑐𝑐) 

𝑚𝑚� =
𝑛𝑛∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − (∑𝑥𝑥𝑖𝑖)(∑𝑦𝑦𝑖𝑖)

𝑛𝑛∑𝑥𝑥𝑖𝑖2 − �∑𝑥𝑥𝑖𝑖2�
2  

 

𝑚𝑚� =
𝑛𝑛∑𝑦𝑦𝑖𝑖2 − �∑𝑦𝑦𝑖𝑖2�

2

𝑛𝑛∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − (∑𝑥𝑥𝑖𝑖)(∑𝑦𝑦𝑖𝑖)
 

 

�̂�𝑐 =
∑𝑦𝑦𝑖𝑖
𝑛𝑛 − 𝑚𝑚�

∑𝑥𝑥𝑖𝑖
𝑛𝑛  �̂�𝑐 =

∑𝑦𝑦𝑖𝑖
𝑛𝑛 − 𝑚𝑚�

∑𝑥𝑥𝑖𝑖
𝑛𝑛  

            
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Left minimize y residual, right minimize x residual 
 
The LMS method can be used to estimate the line of best fit when using plotting parameter 
estimation methods. When plotting on a regular scale in software such as Microsoft Excel, 
it is often easy to conduct linear least mean square (LMS) regression using in built 
functions. Where available this book provides the formulas to plot the sample data in a 
straight line in a regular scale plot. It also provides the transformation from the linear LMS 
regression estimates of 𝑚𝑚�  and �̂�𝑐  to the distribution parameter estimates.  
 
For more on least square methods in a reliability engineering context see (Nelson 1990, 
p.167). MS regression can also be conducted on multivariate distributions, see (Rao & 
Toutenburg 1999) and can also be conducted on non-linear data directly, see (Bjõrck 
1996). 
 
1.4.4. Method of Moments 

To estimate the distribution parameters using the method of moments the sample 
moments are equated to the parameter moments and solved for the unknown parameters. 
The following sample moments can be used: 
 
The sample mean is given as: 

�̅�𝑥 =
1
𝑛𝑛
�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

Regression line  
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

𝑥𝑥 

𝑦𝑦 

0 𝑥𝑥 

𝑦𝑦 

0 

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) 
𝑦𝑦𝑖𝑖 

𝑓𝑓(𝑥𝑥𝑖𝑖;𝑚𝑚, 𝑐𝑐) 

𝑟𝑟𝑖𝑖  

Regression line  
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) 

𝑦𝑦𝑖𝑖 𝑓𝑓(𝑦𝑦𝑖𝑖;𝑚𝑚, 𝑐𝑐) 

𝑟𝑟𝑖𝑖  
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The unbiased sample variance is given as: 

𝑆𝑆2 =
1

𝑛𝑛 − 1�
(𝑥𝑥𝑖𝑖 − �̅�𝑥)2

𝑛𝑛

𝑖𝑖=1

 

 
Method of moments is not as accurate as Bayesian or maximum likelihood estimates but 
is easy and fast to calculate. The method of moment estimates are often used as a starting 
point for numerical methods to optimize maximum likelihood and least square estimators.   
 
 
1.4.5. Maximum Likelihood Estimates 

Maximum likelihood estimates (MLE) are based on a frequentist approach to parameter 
estimation usually obtained by maximizing the natural log of the likelihood function.  
 

Λ(θ|E) = ln{𝐿𝐿(𝜃𝜃|𝐸𝐸)} 
 
Algebraically this is done by solving the first order partial derivatives of the log-likelihood 
function. This calculation has been included in this book for distributions where the result 
is in closed form. Otherwise the log-likelihood function can be maximized directly using 
numerical methods. 
 
MLE for 𝜃𝜃� is obtained by solving for 𝜃𝜃: 

𝜕𝜕Λ
𝜕𝜕𝜃𝜃 = 0 

 
Denote the true parameters of the distribution as 𝜽𝜽𝟎𝟎, MLEs have the following properties 
(Rinne 2008, p.406): 

• Consistency.  As the number of samples increases the difference between the 
estimated and actual parameter decreases: 

plim
𝑛𝑛→∞

𝜽𝜽� = 𝜽𝜽 

 
• Asymptotic normality.  

lim
𝑛𝑛→∞

𝜃𝜃�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜃𝜃0, [𝐼𝐼𝑛𝑛(𝜃𝜃0)]−1) 
 
where 𝐼𝐼𝑛𝑛(𝜃𝜃) = 𝑛𝑛𝐼𝐼(𝜃𝜃) is the Fisher information matrix. Therefore 𝜃𝜃� is 
asymptotically unbiased: 

lim
𝑛𝑛→∞

𝐸𝐸[𝜃𝜃�] = 𝜃𝜃0 
 

• Asymptotic efficiency.  
lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑟𝑟[𝜃𝜃�] = [𝐼𝐼𝑛𝑛(𝜃𝜃0)]−1 
 

• Invariance.  The MLE of 𝑓𝑓(𝜃𝜃0) is 𝑓𝑓(𝜃𝜃�) if 𝑓𝑓(. ) is a continuous and continuously 
differentiable function.  
 

The advantages of MLE are that it is a very common technique that has been widely 
published and is implemented in many software packages. The MLE method can easily 
handle censored data. The disadvantage to MLE is the bias introduced for small sample 
sizes and unbounded estimates may result when no failures have been observed. The 
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numerical optimization of the log-likelihood function may be non-trivial with high sensitivity 
to starting values and the presence of local maximums.  
 
For more information in a reliability context see (Nelson 1990, p.284). 
 
1.4.6. Bayesian Estimation 

Bayesian estimation uses a subjective interpretation of the theory of probability and for 
parameter point estimation and confidence intervals uses Bayes’ rule to update our state 
of knowledge of the unknown of interest (UIO). Recall from section 1.1.5 Bayes rule, 
 

𝜋𝜋(𝜃𝜃|𝐸𝐸) =
𝜋𝜋𝑜𝑜(𝜃𝜃) 𝐿𝐿(𝐸𝐸|𝜃𝜃)

∫ 𝜋𝜋𝑜𝑜(𝜃𝜃) 𝐿𝐿(𝐸𝐸|𝜃𝜃) 𝑑𝑑𝜃𝜃
, 𝑃𝑃(𝜃𝜃|𝐸𝐸) =

𝑃𝑃(𝜃𝜃)𝑃𝑃(𝐸𝐸|𝜃𝜃)
∑ 𝑃𝑃(𝐸𝐸|𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃)𝑖𝑖

 

respectively for continuous and discrete forms of variable of 𝜃𝜃.  
 
The Prior Distribution 𝜋𝜋𝑜𝑜(𝜃𝜃) 
 
The prior distribution is probability distribution of the UOI, 𝜃𝜃, which captures our state of 
knowledge of 𝜃𝜃 prior to the evidence being observed. It is common for this distribution to 
represent soft evidence or intervals about the possible values of 𝜃𝜃. If the distribution is 
dispersed it represents little being known about the parameter. If the distribution is 
concentrated in an area then it reflects a good knowledge about the likely values of 𝜃𝜃. 
 
Prior distributions should be a proper probability distribution of 𝜃𝜃. A distribution is proper 
when it integrates to one and improper otherwise.  The prior should also not be selected 
based on the form of the likelihood function. When the prior has a constant which does 
not affect the posterior distribution (such as improper priors) it will be omitted from the 
formulas within this book. 
 
Non-informative Priors. Occasions arise when it is not possible to express a subjective 
prior distribution due to lack of information, time or cost. Alternatively a subjective prior 
distribution may introduce unwanted bias through model convenience (conjugates) or due 
to elicitation methods. In such cases a non-informative prior may be desirable. The 
following methods exist for creating a non-informative prior (Yang and Berger 1998): 
 

• Principle of Indifference - Improper Uniform Priors. An equal probability is 
assigned across all the possible values of the parameter. This is done using an 
improper uniform distribution with a constant, usually 1,  over the range of the 
possible values for 𝜃𝜃. When placed in Bayes formula the constant cancels out, 
however the denominator is integrated over all possible values of 𝜃𝜃. In most 
cases this prior distribution will result in a proper posterior, but not always. 
Improper Uniform Priors may be chosen to enable the use of conjugate priors.  

 
For example using exponential likelihood model, with an improper uniform prior, 
1, over the limits [0,∞) with evidence of 𝑛𝑛𝐹𝐹 failures in total time, 𝑡𝑡𝑇𝑇: 
 

Prior:     𝜋𝜋0(𝜆𝜆) = 1 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1,0)  
 

Likelihood:           𝐿𝐿(𝐸𝐸|𝜆𝜆) = 𝜆𝜆nF𝑒𝑒−𝜆𝜆𝑡𝑡𝑇𝑇 
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Posterior:   𝜋𝜋(𝜆𝜆|𝐸𝐸) =
1.𝐿𝐿(𝐸𝐸|𝜆𝜆)

1.∫ 𝐿𝐿(𝐸𝐸|𝜆𝜆) 𝑑𝑑𝜆𝜆∞
0

 

 
Using conjugate relationship (see Conjugate Priors for calculations): 
 

𝜆𝜆~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + nF, tT) 
 

• Principle of Indifference - Proper Uniform Priors. An equal probability is 
assigned across the values of the parameter within a range defined by the 
uniform distribution.  The uniform distribution is obtained by estimating the far 
left and right bounds (𝑉𝑉 and 𝑏𝑏) of the parameter 𝜃𝜃 giving 𝜋𝜋𝑜𝑜(𝜃𝜃) = 1

𝑏𝑏−𝑎𝑎
= 𝑐𝑐, where 

c is a constant.   When placed in Bayes formula the constant cancels out, 
however the denominator is integrated over the bound [𝑉𝑉, 𝑏𝑏]. Care needs to be 
taken in choosing 𝑉𝑉 and 𝑏𝑏 because no matter how much evidence suggests 
otherwise the posterior distribution will always be zero outside these bounds.  
 
Using an exponential likelihood model, with a proper uniform prior, 𝑐𝑐, over the 
limits [𝑉𝑉,𝑏𝑏] with evidence of 𝑛𝑛𝐹𝐹 failures in total time, 𝑡𝑡𝑇𝑇: 
 

Prior:     𝜋𝜋0(𝜆𝜆) = 1
𝑏𝑏−𝑎𝑎

= 𝑐𝑐 ∝ 𝑇𝑇𝑟𝑟𝑢𝑢𝑛𝑛𝑐𝑐𝑉𝑉𝑡𝑡𝑒𝑒𝑑𝑑 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1,0)  
 

Likelihood:      𝐿𝐿(𝐸𝐸|𝜆𝜆) = 𝜆𝜆nF𝑒𝑒−𝜆𝜆𝑡𝑡𝑇𝑇 
 

Posterior:   𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝑐𝑐.𝐿𝐿(𝐸𝐸|𝜆𝜆)

𝑐𝑐.∫ 𝐿𝐿(𝐸𝐸|𝜆𝜆) 𝑑𝑑𝜆𝜆𝑏𝑏
𝑉𝑉

   for  a ≤ λ ≤ b 

 
Using conjugate relationship this results in a truncated Gamma distribution: 
 

𝜋𝜋(𝜆𝜆) = �𝑐𝑐.𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + nF, tT)   for  a ≤ λ ≤ b
0          otherwise      

 
 

 
•  Jeffrey’s Prior. Proposed by Jeffery in 1961, this prior is defined as 𝜋𝜋0(𝜃𝜃) =

�𝑑𝑑𝑒𝑒𝑡𝑡(𝑰𝑰𝜃𝜃) where 𝑰𝑰𝜃𝜃 is the Fisher information matrix. This derivation is motivated 
by the fact that it is not dependent upon the set of parameter variables that is 
chosen to describe parameter space. Jeffery himself suggested the need to 
make ad hoc modifications to the prior to avoid problems in multidimensional 
distributions. Jeffory’s prior is normally improper. (Bernardo et al. 1992) 
 

• Reference Prior. Proposed by Bernardo in 1979, this prior maximizes the 
expected posterior information from the data, therefore reducing the effect of the 
prior. When there is no nuisance parameters and certain regularity conditions 
are satisfied the reference prior is identical to the Jeffrey’s prior. Due to the need 
to order or group the importance of parameters, it may occur that different 
posteriors will result from the same data depending on the importance the user 
places on each parameter. This prior overcomes the problems which arise when 
using Jeffery’s prior in multivariate applications. 
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• Maximal Data Information Prior (MDIP). Developed by Zelluer in 1971 
maximizes the likelihood function with relation to the prior. (Berry et al. 1995, 
p.182) 

 
For further detail on the differences between each type of non-informative prior see (Berry 
et al. 1995, p.179) 
 
Conjugate Priors.  Calculating posterior distributions can be extremely complex and in 
most cases requires expensive computations. A special case exists however by which the 
posterior distribution is of the same form as the prior distribution. The Bayesian updating 
mathematics can be reduced to simple calculations to update the model parameters. As 
an example the gamma function is a conjugate prior to a Poisson likelihood function: 
 

Prior:  𝜋𝜋𝑜𝑜(𝜆𝜆) =
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1

Γ(𝛼𝛼) 𝑒𝑒−βλ 

 

Likelihood:  𝐿𝐿𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆) =
𝜆𝜆𝑖𝑖𝑘𝑘𝑡𝑡𝑖𝑖𝑘𝑘

𝑘𝑘𝑖𝑖!
𝑒𝑒−𝜆𝜆𝑡𝑡𝑖𝑖 

 

Likelihood:  𝐿𝐿(𝐸𝐸|𝜆𝜆) = �𝐿𝐿𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆)
𝑛𝑛𝐹𝐹

𝑖𝑖=1

=
𝜆𝜆∑𝑘𝑘∏𝑡𝑡𝑖𝑖𝑘𝑘

∏𝑘𝑘𝑖𝑖!
𝑒𝑒−𝜆𝜆∑𝑡𝑡𝑖𝑖 

 

Posterior:   𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝜋𝜋𝐶𝐶(𝜆𝜆)𝐿𝐿(𝐸𝐸|𝜆𝜆)

∫ 𝜋𝜋𝐶𝐶(𝜆𝜆)𝐿𝐿(𝐸𝐸|𝜆𝜆) 𝑑𝑑𝜆𝜆∞
0

 

  

=

𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝜆𝜆∑𝑘𝑘∏𝑡𝑡𝑖𝑖𝑘𝑘
Γ(𝛼𝛼)∏𝑘𝑘𝑖𝑖!

𝑒𝑒−βλ𝑒𝑒−𝜆𝜆∑𝑡𝑡𝑖𝑖

� 𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝜆𝜆∑𝑘𝑘∏𝑡𝑡𝑖𝑖𝑘𝑘
Γ(𝛼𝛼)∏𝑘𝑘𝑖𝑖!

𝑒𝑒−βλ𝑒𝑒−𝜆𝜆∑𝑡𝑡𝑖𝑖
∞

0

  𝑑𝑑𝜆𝜆

 

   

=
𝜆𝜆𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖)

∫ 𝜆𝜆𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖)∞
0   𝑑𝑑𝜆𝜆

  

 
Using the identity Γ(𝑧𝑧) = ∫ 𝑥𝑥𝑧𝑧−1𝑒𝑒−𝑖𝑖∞

𝑜𝑜 𝑑𝑑𝑥𝑥 we can calculate the denominator using the 
change of variable 𝑢𝑢 = 𝜆𝜆(𝛽𝛽 + ∑𝑡𝑡𝑖𝑖). This results in 𝜆𝜆 = 𝑢𝑢

𝛽𝛽+∑𝑡𝑡𝑖𝑖
,  and 𝑑𝑑𝜆𝜆 = 𝑑𝑑𝑢𝑢

𝛽𝛽+∑𝑡𝑡𝑖𝑖
  with the limits 

of 𝑢𝑢 the same as 𝜆𝜆 . Substituting back into the posterior equation gives: 
 

 𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝜆𝜆𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖)

1
𝛽𝛽 + ∑𝑡𝑡𝑖𝑖

� � 𝑢𝑢
𝛽𝛽 + ∑𝑡𝑡𝑖𝑖

�
𝛼𝛼−1+∑𝑘𝑘

 𝑒𝑒−u
∞

0

  𝑑𝑑𝑢𝑢

 

  

=
𝜆𝜆𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖)

1
(𝛽𝛽 + ∑𝑡𝑡𝑖𝑖)𝛼𝛼+∑𝑘𝑘

∫ 𝑢𝑢𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−u∞
0   𝑑𝑑𝑢𝑢

 

Let 𝑧𝑧 = 𝛼𝛼 + ∑𝑘𝑘 



30  Probability Distributions Used in Reliability Engineering      
Pa

ra
m

et
er

 E
st

 

𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝜆𝜆𝛼𝛼−1+∑𝑘𝑘  𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖)

1
(𝛽𝛽 + ∑𝑡𝑡𝑖𝑖)𝛼𝛼+∑𝑘𝑘

∫ 𝑢𝑢𝑧𝑧−1 𝑒𝑒−u∞
0   𝑑𝑑𝑢𝑢

 

 
Using  Γ(𝑧𝑧) = ∫ 𝑥𝑥𝑧𝑧−1𝑒𝑒−𝑖𝑖∞

𝑜𝑜 𝑑𝑑𝑥𝑥: 

𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝜆𝜆𝛼𝛼−1+∑𝑘𝑘(𝛽𝛽 + ∑𝑡𝑡𝑖𝑖)𝛼𝛼+∑𝑘𝑘  

Γ(𝛼𝛼 + ∑𝑘𝑘) 𝑒𝑒−λ(β+∑𝑡𝑡𝑖𝑖) 

 
Let 𝛼𝛼′ = 𝛼𝛼 + ∑𝑘𝑘,  𝛽𝛽′ = 𝛽𝛽 + ∑𝑡𝑡𝑖𝑖: 

𝜋𝜋(𝜆𝜆|𝐸𝐸) =
𝜆𝜆𝛼𝛼′−1𝛽𝛽′𝛼𝛼

′
 

Γ(𝛼𝛼′) 𝑒𝑒−β′λ 

 
As can be seen the posterior is a gamma distribution with the parameters 𝛼𝛼′ = 𝛼𝛼 + ∑𝑘𝑘,  
𝛽𝛽′ = 𝛽𝛽 + ∑𝑡𝑡𝑖𝑖. Therefore the prior and posterior are of the same form, and Bayes’ rule does 
not need to be re-calculated for each update. Instead the user can simply update the 
parameters with the new evidence. 
 
The Likelihood Function  𝐿𝐿(𝐸𝐸|𝜃𝜃) 
 
The reader is referred to section 1.1.6 for a discussion on the construction of the likelihood 
function.  
 
The Posterior Distribution  𝜋𝜋(𝜃𝜃|𝐸𝐸) 
 
The posterior distribution is a probability distribution of the UOI, 𝜃𝜃, which captures our 
state of knowledge of 𝜃𝜃 including all prior information and the evidence.  
 
Point Estimate. From the posterior distribution we may want to give a point estimate of 
θ. The Bayesian estimator when using a quadratic loss function is the posterior mean 
(Christensen & Huffman 1985): 
 

𝜃𝜃� = 𝐸𝐸[𝜋𝜋(𝜃𝜃|𝐸𝐸)] = ∫ 𝜃𝜃𝜋𝜋(𝜃𝜃|𝐸𝐸) 𝑑𝑑𝜃𝜃 = 𝜇𝜇𝜋𝜋 
 
For more information on utility, loss functions and estimators in a Bayesian context see 
(Berger 1993). 
 
1.4.7. Confidence Intervals 

Assuming a random variable is distributed by a given distribution, there exists the true 
distribution parameters, 𝜽𝜽𝟎𝟎, which is unknown. The parameter point estimates, 𝜽𝜽�, may or 
may not be close to the true parameter values. Confidence intervals provide the range 
over which the true parameter values may exist with a certain level of confidence. 
Confidence intervals only quantify uncertainty due to sampling error arising from a limited 
number of samples. Uncertainty due to incorrect model selection or incorrect assumptions 
is not included. (Meeker & Escobar 1998, p.49) 
 
Increasing the desired confidence 𝛾𝛾 results in an increased confidence interval. Increasing 
the sample size generally decreases the confidence interval. There are many methods to 
calculate confidence intervals. Some popular methods are:  
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• Exact Confidence Intervals. It may be mathematically shown that the 

parameter of a distribution itself follows a distribution. In such cases exact 
confidence intervals can be derived. This is only the case in very few 
distributions. 
 

• Fisher Information Matrix (Nelson 1990, p.292). For a large number of 
samples, the asymptotic normal property can be used to estimate confidence 
intervals: 

lim
𝑛𝑛→∞

𝜃𝜃�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜃𝜃0, [𝑛𝑛𝐼𝐼(𝜃𝜃0)]−1) 
 
Combining this with the asymptotic property 𝜃𝜃� → 𝜃𝜃0 as 𝑛𝑛 → ∞ gives the following 
estimate for the distribution of 𝜃𝜃�: 

lim
𝑛𝑛→∞

𝜃𝜃�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚 �𝜃𝜃�, �𝐽𝐽𝑛𝑛�𝜃𝜃���
−1� 

 
100𝛾𝛾% approximate confidence intervals are calculated using percentiles of the 
normal distribution. If the range of 𝜃𝜃 is unbounded (−∞,∞) the approximate two 
sided confidence intervals are: 

𝜃𝜃𝛾𝛾 = 𝜃𝜃� − Φ−1 �
1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

 

𝜃𝜃𝛾𝛾��� = 𝜃𝜃� + Φ−1 �
1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

 
 
If the range of 𝜃𝜃 is (0,∞) the approximate two sided confidence intervals are: 

𝜃𝜃𝛾𝛾 = 𝜃𝜃�. exp

⎣
⎢
⎢
⎡𝛷𝛷−1 �1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

−𝜃𝜃�
⎦
⎥
⎥
⎤
 

𝜃𝜃𝛾𝛾��� = 𝜃𝜃�. exp

⎣
⎢
⎢
⎡𝛷𝛷−1 �1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

𝜃𝜃�
⎦
⎥
⎥
⎤
 

If the range of 𝜃𝜃 is (0,1) the approximate two sided confidence intervals are: 

𝜃𝜃𝛾𝛾 = 𝜃𝜃�.

⎩
⎨

⎧
𝜃𝜃� + (1 − 𝜃𝜃�) exp

⎣
⎢
⎢
⎡𝛷𝛷−1 �1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

𝜃𝜃�(1 − 𝜃𝜃�)
⎦
⎥
⎥
⎤

⎭
⎬

⎫
−1

 

𝜃𝜃𝛾𝛾��� = 𝜃𝜃�.

⎩
⎨

⎧
𝜃𝜃� + (1 − 𝜃𝜃�) exp

⎣
⎢
⎢
⎡𝛷𝛷−1 �1 + 𝛾𝛾

2 ���𝐽𝐽𝑛𝑛�𝜃𝜃���
−1

−𝜃𝜃�(1 − 𝜃𝜃�)
⎦
⎥
⎥
⎤

⎭
⎬

⎫
−1

 

 
The advantage of this method is it can be calculated for all distributions and is 
easy to calculate. The disadvantage is that the assumption of a normal 
distribution is asymptotic and so sufficient data is required for the confidence 
interval estimate to be accurate. The number of samples needed for an accurate 
estimate changes from distribution to distribution.  It also produces symmetrical 
confidence intervals which may be very inaccurate. For more information see 
(Nelson 1990, p.292).   
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• Likelihood Ratio Intervals (Nelson 1990, p.292).  The test statistic for the 

likelihood ratio is: 
𝐷𝐷 = 2[Λ�𝜃𝜃�� − Λ(𝜃𝜃)] 

 
𝐷𝐷 is approximately Chi-Square distributed with one degree of freedom. 

𝐷𝐷 = 2�Λ�𝜃𝜃�� − Λ(𝜃𝜃)� ≤ 𝜒𝜒2(𝛾𝛾; 1) 
 
Where 𝛾𝛾 is the 100𝛾𝛾% confidence interval for 𝜃𝜃. The two sided confidence limits 
𝜃𝜃𝛾𝛾 and 𝜃𝜃𝛾𝛾��� are calculated by solving: 

Λ(𝜃𝜃) = Λ�𝜃𝜃�� −
𝜒𝜒2(𝛾𝛾; 1)

2  
 
The limits are normally solved numerically. The likelihood ratio intervals are 
always within the limits of the parameter and gives asymmetrical confidence 
limits. It is much more accurate than the Fisher information matrix method 
particularly for one sided limits although it is more complicated to calculate. This 
method must be solved numerically and so will not be discussed further in this 
book. 

 
• Bayesian Confidence Intervals. In Bayesian statistics the uncertainty of a 

parameter, 𝜃𝜃, is quantified as a distribution 𝜋𝜋(𝜃𝜃). Therefore the two sided 100𝛾𝛾% 
confidence intervals are found by solving: 

 
1 − 𝛾𝛾

2
= � 𝜋𝜋(𝜃𝜃) 𝑑𝑑𝜃𝜃

𝜃𝜃𝛾𝛾

−∞
,

1 + 𝛾𝛾
2 = � 𝜋𝜋(𝜃𝜃) 𝑑𝑑𝜃𝜃

∞

𝜃𝜃𝛾𝛾
 

 
Other methods exist to calculate approximate confidence intervals. A summary of some 
techniques used in reliability engineering is included in (Lawless 2002).
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1.5. Related Distributions 

 
Figure 7: Relationships between common distributions (Leemis & McQueston 2008). 

 
Many relations are not included such as central limit convergence to the normal 
distribution and many transforms which would have made the figure unreadable. For 
further details refer to individual sections and (Leemis & McQueston 2008). 

𝐶𝐶 = 2,𝜎𝜎 

𝑋𝑋𝐹𝐹 = 𝑋𝑋𝑇𝑇2  
𝑛𝑛1 = 1,𝑛𝑛2 = 𝐶𝐶  

lim
𝑛𝑛
→
∞

 
𝑛𝑛𝑝𝑝

=
𝜇𝜇 

 XC = 

��
XN(k) − µ

σ
�
2

V

 

Normal  
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2) 

Uniform  
𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑉𝑉, 𝑏𝑏) 

Gamma 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

Poisson 
𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝜇𝜇) 

Rayleigh 
𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝜎𝜎) 

Student t 
𝑡𝑡(𝐶𝐶) 

Chi-square  
𝜒𝜒2(𝐶𝐶) 

Chi  
𝜒𝜒(𝐶𝐶) 

Bernoulli 
𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑝𝑝) 

Standard Uniform 
𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(0,1) 

Weibull 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝛼𝛼,𝛽𝛽) 

Exponential 
𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆) 

Beta  
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼,𝛽𝛽) 

Binomial  
𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑛𝑛, 𝑝𝑝) 

𝑋𝑋
𝐹𝐹

=
𝑋𝑋
𝐶𝐶1 𝑛𝑛

2

𝑋𝑋
𝐶𝐶2 𝑛𝑛

1  

Lognormal 
𝐿𝐿𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇𝑁𝑁,𝜎𝜎𝑁𝑁2) 

𝑋𝑋𝐺𝐺 = �𝑋𝑋𝐵𝐵𝐵𝐵
𝑛𝑛

 
(𝑖𝑖𝑖𝑖𝑑𝑑) 

𝑛𝑛 = 1 

𝑋𝑋𝑁𝑁 = ln(𝑋𝑋𝐿𝐿) 

𝑋𝑋𝐵𝐵 =
𝑋𝑋𝐶𝐶1

𝑋𝑋𝐶𝐶1 + 𝑋𝑋𝐶𝐶2
, 𝛼𝛼 = 1

2
𝐶𝐶1,𝛽𝛽 = 1

2
𝐶𝐶2 

𝑉𝑉 = 0 
𝑏𝑏 = 1 

𝛽𝛽
=

1 

𝑋𝑋
𝑊𝑊

=
𝑋𝑋
𝐵𝐵 1
𝛽𝛽 � 

        𝛽𝛽 = 2 
𝜎𝜎 = √2/𝛼𝛼 

𝑋𝑋𝐵𝐵 = ln(𝑋𝑋𝑃𝑃 𝜃𝜃⁄ ) 

𝑋𝑋𝑆𝑆 = exp(−𝜆𝜆𝑋𝑋𝐵𝐵) 

𝑋𝑋
𝑆𝑆(1) ≤

⋯
≤
𝑋𝑋
𝑆𝑆 (𝑛𝑛 ) ,𝑋𝑋

𝑆𝑆 (𝑟𝑟 ) ~
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 

𝛼𝛼
=

1,𝛽𝛽
=

1 

𝑋𝑋𝐵𝐵 =
𝑋𝑋𝐺𝐺1

𝑋𝑋𝐺𝐺1 + 𝑋𝑋𝐺𝐺2
 

 𝛼𝛼 = 𝑘𝑘1 ,𝛽𝛽 = 𝑘𝑘2 

𝑓𝑓𝑃𝑃(𝑘𝑘; 𝜆𝜆𝑡𝑡) =  
     𝐹𝐹𝐺𝐺(𝑡𝑡;𝑘𝑘 + 1,𝜆𝜆)  
     −𝐹𝐹𝐺𝐺(𝑡𝑡;𝑘𝑘,𝜆𝜆)  

𝑘𝑘
=

1 

𝑋𝑋
𝐺𝐺

=
𝑋𝑋
𝐵𝐵1

+
⋯

+
𝑋𝑋
𝐵𝐵𝑘𝑘  

F 
𝐹𝐹(𝑛𝑛1,𝑛𝑛2) 

Pareto 
𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼

 

𝑋𝑋𝑅𝑅 = �𝑋𝑋𝐵𝐵  

 X
C

=
|𝑿𝑿

𝑵𝑵
| 

 X
χ2

=
𝑋𝑋
𝜒𝜒 2 

𝐶𝐶
=

2,
𝛼𝛼

=
√2

,𝛽𝛽
=

2 
Transformation 
 

Special Case 
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1.6. Supporting Functions 
 
1.6.1. Beta Function 𝐁𝐁(𝒙𝒙,𝒚𝒚) 

B(𝑥𝑥,𝑦𝑦) is the Beta function and is the Euler integral of the first kind. 

𝐵𝐵(𝑥𝑥,𝑦𝑦) = � 𝑢𝑢𝑖𝑖−1(1 − 𝑢𝑢)𝑦𝑦−1𝑑𝑑𝑢𝑢
1

0
 

Where 𝑥𝑥 > 0 and 𝑦𝑦 > 0. 
 
Relationships: 

𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝐵𝐵(𝑦𝑦, 𝑥𝑥) 

𝐵𝐵(𝑥𝑥,𝑦𝑦) =
Γ(𝑥𝑥)Γ(𝑦𝑦)
Γ(𝑥𝑥 + 𝑦𝑦)  

      𝐵𝐵(𝑥𝑥,𝑦𝑦) = �
�𝑛𝑛 − 𝑦𝑦

𝑛𝑛 �
𝑥𝑥 + 𝑛𝑛

∞

𝑛𝑛=0

 

 
More formulas, definitions and special values can be found in the Digital Library of 
Mathematical Functions on the National Institute of Standards and Technology (NIST) 
website, http://dlmf.nist.gov. 
 
1.6.2. Incomplete Beta Function 𝑩𝑩𝑩𝑩(𝑩𝑩;𝒙𝒙,𝒚𝒚) 

𝐵𝐵𝑡𝑡(𝑡𝑡; 𝑥𝑥,𝑦𝑦) is the incomplete Beta function expressed by: 

𝐵𝐵𝑡𝑡(𝑡𝑡; 𝑥𝑥,𝑦𝑦) = � 𝑢𝑢𝑖𝑖−1(1 − 𝑢𝑢)𝑦𝑦−1𝑑𝑑𝑢𝑢
𝑡𝑡

0
 

 
1.6.3. Regularized Incomplete Beta Function 𝑰𝑰𝑩𝑩(𝑩𝑩;𝒙𝒙,𝒚𝒚) 

𝐼𝐼𝑡𝑡(𝑡𝑡|𝑥𝑥,𝑦𝑦) is the regularized incomplete Beta function: 

𝐼𝐼𝑡𝑡(𝑡𝑡|𝑥𝑥,𝑦𝑦) =
𝐵𝐵𝑡𝑡(t ; 𝑥𝑥,𝑦𝑦)
𝐵𝐵(𝑥𝑥,𝑦𝑦)  

  

= �
(𝑥𝑥 + 𝑦𝑦 − 1)!

𝑗𝑗! (𝑥𝑥 + 𝑦𝑦 − 1 − 𝑗𝑗)!
. 𝑡𝑡𝑗𝑗(1 − 𝑡𝑡)𝑖𝑖+𝑦𝑦−1−𝑗𝑗  

𝑖𝑖+𝑦𝑦−1

𝑗𝑗=𝑖𝑖

 

Properties: 
𝐼𝐼0(0;  𝑥𝑥,𝑦𝑦) = 0 

 
𝐼𝐼1(1;  𝑥𝑥,𝑦𝑦) = 1 

 
𝐼𝐼𝑡𝑡(t;  𝑥𝑥,𝑦𝑦) = 1 − 𝐼𝐼(1 − t;  𝑦𝑦, 𝑥𝑥) 

 
1.6.4. Complete Gamma Function 𝚪𝚪(𝒌𝒌)  

Γ(𝑘𝑘) is a generalization of the factorial function 𝑘𝑘! to include non-integer values.  
 
 

http://dlmf.nist.gov/
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For 𝑘𝑘 > 0 

Γ(𝑘𝑘) = � 𝑡𝑡𝑘𝑘−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
 

      = �
 
 
𝑡𝑡𝑘𝑘−1𝑒𝑒−𝑡𝑡�

0

∞
+ (𝑘𝑘 − 1)� 𝑡𝑡𝑘𝑘−2𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡

∞

0
 

= (𝑘𝑘 − 1)� 𝑡𝑡𝑘𝑘−2𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
 

= (𝑘𝑘 − 1)Γ(𝑘𝑘 − 1) 
 
When 𝑘𝑘 is an integer: 

Γ(𝑘𝑘) = (𝑘𝑘 − 1)! 
Special values: 

Γ(1) = 1 
  
Γ(2) = 1 
  

Γ �
1
2� = √𝜋𝜋 

 
Relation to the incomplete gamma functions: 

Γ(𝑘𝑘) = Γ(𝑘𝑘, 𝑡𝑡) + 𝛾𝛾(𝑘𝑘, 𝑡𝑡) 
 
More formulas, definitions and special values can be found in the Digital Library of 
Mathematical Functions on the National Institute of Standards and Technology (NIST) 
website, http://dlmf.nist.gov.  
 
1.6.5. Upper Incomplete Gamma Function 𝚪𝚪(𝒌𝒌, 𝑩𝑩)  

For 𝑘𝑘 > 0 

Γ(𝑘𝑘, 𝑡𝑡) = � 𝑥𝑥𝑘𝑘−1𝑒𝑒−𝑖𝑖𝑑𝑑𝑥𝑥
∞

𝑡𝑡
 

When 𝑘𝑘 is an integer: 

Γ(𝑘𝑘, 𝑡𝑡) = (𝑘𝑘 − 1)! 𝑒𝑒−𝑡𝑡 �
𝑡𝑡𝑛𝑛

𝑛𝑛!

𝑘𝑘−1

𝑛𝑛=0

 

 
More formulas, definitions and special values can be found on the NIST website, 
http://dlmf.nist.gov. 
  
 
1.6.6. Lower Incomplete Gamma Function 𝛄𝛄(𝒌𝒌, 𝑩𝑩)  

For 𝑘𝑘 > 0 

γ(𝑘𝑘, 𝑡𝑡) = � 𝑥𝑥𝑘𝑘−1𝑒𝑒−𝑖𝑖𝑑𝑑𝑥𝑥
𝑡𝑡

0
 

When 𝑘𝑘 is an integer: 

γ(𝑘𝑘, 𝑡𝑡) = (𝑘𝑘 − 1)! �1 − 𝑒𝑒−𝑡𝑡 �
𝑡𝑡𝑛𝑛

𝑛𝑛!

𝑘𝑘−1

𝑛𝑛=0

� 

 

http://dlmf.nist.gov/
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More formulas, definitions and special values can be found on the NIST website, 
http://dlmf.nist.gov. 
 
 
1.6.7. Digamma Function 𝝍𝝍(𝒙𝒙)  

𝜓𝜓(𝑥𝑥) is the digamma function defined as: 

𝜓𝜓(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑥𝑥 ln[Γ(𝑥𝑥)] =

Γ′(𝑥𝑥)
Γ(𝑥𝑥)   𝑓𝑓𝐶𝐶𝑟𝑟 𝑥𝑥 > 0 

 
 
1.6.8. Trigamma Function 𝝍𝝍′(𝒙𝒙)  

𝜓𝜓′(𝑥𝑥) is the trigamma function defined as: 

𝜓𝜓′(𝑥𝑥) =
𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑠𝑠𝑛𝑛Γ(𝑥𝑥)  = �(𝑥𝑥 + 𝑖𝑖)−2
∞

𝑖𝑖=0

 

 
 

http://dlmf.nist.gov/
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1.7. Referred Distributions 
 
1.7.1.  Inverse Gamma Distribution 𝑰𝑰𝑰𝑰(𝜶𝜶,𝜷𝜷) 

The pdf to the inverse gamma distribution is: 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)𝑥𝑥𝛼𝛼+1 . 𝑒𝑒
−𝛽𝛽
𝑖𝑖 . 𝐼𝐼𝑖𝑖(0,∞) 

With mean: 

𝜇𝜇 =
𝛽𝛽

𝛼𝛼 − 1  for 𝛼𝛼 > 1 
 
1.7.2. Student T Distribution 𝑻𝑻(𝜶𝜶,𝝁𝝁,𝝈𝝈𝝈𝝈) 

The pdf to the standard student t distribution with 𝜇𝜇 = 0, 𝜎𝜎2 = 1 is:  
 

𝑓𝑓(𝑥𝑥;𝛼𝛼) =
Γ[(𝛼𝛼 + 1) 2⁄ ]

√𝛼𝛼𝜋𝜋Γ(𝛼𝛼 2⁄ )
.�1 +

𝑥𝑥2

𝛼𝛼 �
−𝛼𝛼+12

 

 
The generalized student t distribution is: 

𝑓𝑓(𝑥𝑥;𝛼𝛼, 𝜇𝜇,𝜎𝜎2) =
Γ[(𝛼𝛼 + 1) 2⁄ ]
𝜎𝜎√𝛼𝛼𝜋𝜋Γ(𝛼𝛼 2⁄ )

.�1 +
(𝑥𝑥 − 𝜇𝜇)2

𝛼𝛼𝜎𝜎2 �
−𝛼𝛼+12

 

 
With mean 

𝜇𝜇 = 𝜇𝜇 
 
1.7.3. F Distribution 𝑭𝑭(𝒏𝒏𝟏𝟏,𝒏𝒏𝝈𝝈) 

Also known as the Variance Ratio or Fisher-Snedecor distribution the pdf is: 

𝑓𝑓(𝑥𝑥;𝛼𝛼) =
1

𝑥𝑥𝐵𝐵 �𝑛𝑛12 ,𝑛𝑛22 �
.�

(𝑛𝑛1𝑥𝑥)𝑛𝑛1 .𝑛𝑛2
𝑛𝑛2

(𝑛𝑛1𝑥𝑥 + 𝑛𝑛2){𝑛𝑛1+𝑛𝑛2} 

With cdf: 
𝐼𝐼𝑡𝑡 �

𝑛𝑛1
2 ,

𝑛𝑛2
2 � , 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑡𝑡 =

𝑛𝑛1𝑥𝑥
𝑛𝑛1𝑥𝑥 + 𝑛𝑛2

 

 
1.7.4. Chi-Square Distribution 𝝌𝝌𝝈𝝈(𝒗𝒗) 

The pdf to the chi-square distribution is: 
 

𝑓𝑓(𝑥𝑥;𝐶𝐶) =
𝑥𝑥(𝑣𝑣−2) 2⁄ 𝑒𝑒𝑥𝑥𝑝𝑝 �−𝑥𝑥2�

2𝑣𝑣 2⁄ 𝛤𝛤 �𝐶𝐶2�
 

With mean: 
𝜇𝜇 = 𝐶𝐶 
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1.7.5. Hypergeometric Distribution 𝑯𝑯𝒚𝒚𝑯𝑯𝑯𝑯𝑯𝑯𝑰𝑰𝑯𝑯𝑯𝑯𝑯𝑯(𝒌𝒌;𝒏𝒏,𝑯𝑯,𝑵𝑵) 

The hypergeometric distribution models probability of 𝑘𝑘 successes in 𝑛𝑛 Bernoulli trials 
from population 𝑁𝑁 containing 𝑚𝑚 success without replacement. 𝑝𝑝 = 𝑚𝑚/𝑁𝑁. The pdf to the 
hypergeometric distribution is: 
 

𝑓𝑓(𝑘𝑘; 𝑛𝑛,𝑚𝑚,𝑁𝑁) =
�mk��

N−m
n−k �

�Nn�
 

With mean: 
𝜇𝜇 =

𝑛𝑛𝑚𝑚
𝑁𝑁  

 
1.7.6. Wishart Distribution 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑯𝑯𝑩𝑩𝑾𝑾(𝒙𝒙;𝚺𝚺,𝒏𝒏) 

The Wishart distribution is the multivariate generalization of the gamma distribution. The 
pdf is given as: 
 

𝑓𝑓𝑑𝑑(𝒙𝒙;𝚺𝚺,𝑛𝑛) =
|𝐱𝐱|

1
2(n−d−1)

2𝑛𝑛𝑑𝑑 2⁄ |𝚺𝚺|n 2⁄ Γ𝑑𝑑 �
𝑛𝑛
2�

exp �−
1
2 𝑡𝑡𝑟𝑟�𝒙𝒙

−𝟏𝟏𝚺𝚺�� 

With mean: 
𝝁𝝁 = 𝑛𝑛𝚺𝚺 
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1.8. Nomenclature and Notation 
 
Functions are presented in the following form: 

𝑓𝑓(𝑟𝑟𝑉𝑉𝑛𝑛𝑑𝑑𝐶𝐶𝑚𝑚 𝐶𝐶𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑏𝑏𝑠𝑠𝑒𝑒𝑠𝑠 ;  𝑝𝑝𝑉𝑉𝑟𝑟𝑉𝑉𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟𝑠𝑠 |𝑅𝑅𝑖𝑖𝐶𝐶𝑒𝑒𝑛𝑛 𝐶𝐶𝑉𝑉𝑠𝑠𝑢𝑢𝑒𝑒𝑠𝑠) 
 
𝑛𝑛  In continuous distributions the number of items under test = 𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑅𝑅. 

In discrete distributions the total number of trials. 
 

𝑛𝑛𝐹𝐹  The number of items which failed before the conclusion of the test. 
 

𝑛𝑛𝑆𝑆  The number of items which survived to the end of the test. 
 

𝑛𝑛𝑅𝑅  The number of items  which have interval data 
 

𝑡𝑡𝑖𝑖𝐹𝐹 , 𝑡𝑡𝑖𝑖   The time at which a component fails. 
 

𝑡𝑡𝑖𝑖𝑆𝑆  The time at which a component survived to. The item may have been 
removed from the test for a reason other than failure. 
 

𝑡𝑡𝑖𝑖𝑈𝑈𝑅𝑅  The upper limit of a censored interval in which an item failed 
 

𝑡𝑡𝑖𝑖𝐿𝐿𝑅𝑅  The lower limit of a censored interval in which an item failed 
 

𝑡𝑡𝐿𝐿  The lower truncated limit of sample. 
 

𝑡𝑡𝑈𝑈  The upper truncated limit of sample. 
 

𝑡𝑡𝑇𝑇  Time on test = ∑𝑡𝑡𝑖𝑖 + ∑𝑡𝑡𝑠𝑠 
 

𝑋𝑋 or 𝑇𝑇 Continuous random variable (T is normally a random time) 
 

𝐾𝐾  Discrete random variable 
 

𝑥𝑥 or 𝑡𝑡 A continuous random variable with a known value 
 

𝑘𝑘  A discrete random variable with a known value 
 

𝑥𝑥�  The hat denotes an estimated value 
 

𝒙𝒙  A bold symbol denotes a vector or matrix 
 

𝜃𝜃  Generalized unknown of interest (UOI) 
 

𝜃𝜃  Upper confidence interval for UOI 
 

𝜃𝜃  Lower confidence interval for UOI 
 

𝑋𝑋~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑 The random variable 𝑋𝑋 is distributed as a 𝑑𝑑-variate normal distribution.  
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2. Common Life Distributions 
 
 
 



  Exponential Continuous Distribution  41        
Exponential 

2.1. Exponential Continuous 
Distribution 

 
Probability Density Function - f(t)  

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 𝜆𝜆 𝜆𝜆 > 0 Scale Parameter: Equal to the hazard 
rate. 

Limits 𝑡𝑡 ≥  0 

Function Time Domain Laplace Domain 

PDF 𝑓𝑓(𝑡𝑡) = 𝜆𝜆e−λt 𝑓𝑓(𝑠𝑠) =
𝜆𝜆

𝜆𝜆 + 𝑠𝑠  , 𝑠𝑠 > −𝜆𝜆 

CDF 𝐹𝐹(𝑡𝑡) = 1 − e−λt 𝐹𝐹(𝑠𝑠) =
𝜆𝜆

𝑠𝑠(𝜆𝜆 + 𝑠𝑠) 

Reliability R(t) = e−λt 𝑅𝑅(𝑠𝑠) =
1

𝜆𝜆 + 𝑠𝑠 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = e−λx 𝑚𝑚(𝑠𝑠) =
1

𝜆𝜆 + 𝑠𝑠 

 
Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   
 

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) =

1
𝜆𝜆 𝑢𝑢(𝑠𝑠) =

1
𝜆𝜆𝑠𝑠 

Hazard Rate ℎ(𝑡𝑡) = 𝜆𝜆 ℎ(𝑠𝑠) =
𝜆𝜆
𝑠𝑠 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = 𝜆𝜆𝑡𝑡 𝐻𝐻(𝑠𝑠) =

𝜆𝜆
𝑠𝑠2 

Properties and Moments 

Median 𝑠𝑠𝑛𝑛(2)
𝜆𝜆  

Mode 0 

Mean - 1st Raw Moment 
1
𝜆𝜆 

Variance - 2nd Central Moment 
1
𝜆𝜆2 

Skewness - 3rd Central Moment 2 

Excess kurtosis - 4th Central Moment 6 

Characteristic Function 
𝑖𝑖𝜆𝜆

𝑡𝑡 + 𝑖𝑖𝜆𝜆 

100α% Percentile Function 𝑡𝑡𝛼𝛼 = −
1
𝜆𝜆 ln (1 − 𝛼𝛼) 
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Parameter Estimation 

Plotting Method 

Least Mean 
Square - 𝑦𝑦 =
𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis 
�̂�𝜆 = −𝑚𝑚 

𝑡𝑡𝑖𝑖 𝑠𝑠𝑛𝑛[1 − 𝐹𝐹(𝑡𝑡𝑖𝑖)] 

Likelihood Function 

Likelihood 
Functions 

𝐿𝐿(𝐸𝐸|𝜆𝜆) = λnF� e−λ.ti
FnF

i=1�����������
failures

.� e−ti
SnS

i=1�������
survivors

.� �e−λtiLI − e−λti
UI
�

nI

i=1���������������
interval failures

 

 
when there is no interval data this reduces to: 
 
𝐿𝐿(𝐸𝐸|𝜆𝜆) = 𝜆𝜆nF𝑒𝑒−𝜆𝜆𝑡𝑡𝑇𝑇      𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒      𝑡𝑡𝑇𝑇 = � tiF + � tiS = 𝑡𝑡𝐶𝐶𝑡𝑡𝑉𝑉𝑠𝑠 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 𝑖𝑖𝑛𝑛 𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 

Log-Likelihood 
Functions 

Λ(𝐸𝐸|𝜆𝜆) = r. ln(λ) −�λtiF
nF

i=1�����������
failures

− �λts

nS

i=1���
survivors

+ � ln �e−λtiLI − e−λtiRI�
nI

i=1���������������
interval failures

 

 
when there is no interval data this reduces to: 
 

Λ(𝐸𝐸|𝜆𝜆) = nF. ln(𝜆𝜆) − 𝜆𝜆𝑡𝑡𝑇𝑇     where      𝑡𝑡𝑇𝑇 = � tiF + � tiS 
 

∂Λ
∂λ = 0 

solve for 𝜆𝜆 to get �̂�𝜆: 
 

nF
λ −� tiF

nF

i=1�������
failures

− � tiS
nS

i=1���
survivors

−��
tiLIeλti

LI − tiRIeλti
RI

𝑒𝑒𝜆𝜆𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿 − 𝑒𝑒𝜆𝜆𝑡𝑡𝑖𝑖𝑅𝑅𝐿𝐿
�

nI

i=1���������������
interval failures

= 0 

 

Point 
Estimates 

When there is only complete and right-censored data the point estimate 
is: 

�̂�𝜆 =
nF
𝑡𝑡𝑇𝑇

               𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒      𝑡𝑡𝑇𝑇 = � tiF + � tiS = 𝑡𝑡𝐶𝐶𝑡𝑡𝑉𝑉𝑠𝑠 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 𝑖𝑖𝑛𝑛 𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 

Fisher 
Information 𝐼𝐼(𝜆𝜆) =

1
𝜆𝜆 

100𝛾𝛾% 
Confidence 
Interval  
 
(excluding 
interval data) 

 λlower -  
2-Sided 

λupper -  
2-Sided 

λupper -  
1-Sided 

Type I (Time 
Terminated) 

𝜒𝜒
�1−γ2 �
2 (2nF)

2𝑡𝑡𝑇𝑇
 

𝜒𝜒
�1+γ2  �
2 (2nF + 2)

2𝑡𝑡𝑇𝑇
 

𝜒𝜒(γ)
2 (2nF + 2)

2𝑡𝑡𝑇𝑇
 

Type II (Failure 
Terminated) 

𝜒𝜒
�1−γ2 �
2 (2nF)

2𝑡𝑡𝑇𝑇
 

𝜒𝜒
�1+γ2  �
2 (2nF)

2𝑡𝑡𝑇𝑇
 

𝜒𝜒(γ)
2 (2nF)

2𝑡𝑡𝑇𝑇
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𝜒𝜒(𝛼𝛼)
2  is the 𝛼𝛼 percentile of the Chi-squared distribution.  (Modarres et al. 

1999, pp.151-152) Note: These confidence intervals are only valid for 
complete and right-censored data or when approximations of interval 
data are used (such as the median). They are exact confidence bounds 
and therefore approximate methods such as use of the Fisher 
information matrix need not be used.  

Bayesian 

Non-informative Priors 𝝅𝝅(𝝀𝝀)    
(Yang and Berger 1998, p.6) 

Type Prior Posterior 

Uniform Proper Prior 
with limits 𝜆𝜆 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Gamma Distribution 

For a ≤ λ ≤ b 
𝑐𝑐.𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + nF, tT) 

 
Otherwise  𝜋𝜋(𝜆𝜆) = 0 

Uniform Improper Prior  
with limits 𝜆𝜆 ∈ [0,∞) 

1 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1,0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + nF, tT)  

Jeffrey’s Prior 1
√𝜆𝜆

∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1
2
, 0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 12 + nF, tT) 

when 𝜆𝜆 ∈ [0,∞) 

Novick and Hall 1
𝜆𝜆 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(0,0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; nF, tT) 

when 𝜆𝜆 ∈ [0,∞) 

where       𝑡𝑡𝑇𝑇 = ∑ tiF + ∑ tiS = total time in test 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝜆𝜆 
from 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; λ) 
Exponential 

𝑛𝑛𝐹𝐹 failures 
in 𝑡𝑡𝑇𝑇 unit of 

time 
Gamma 𝑘𝑘0,Λ0 𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 

Λ = Λ𝑜𝑜 + 𝑡𝑡𝑇𝑇 

Description , Limitations and Uses 

Example Three vehicle tires were run on a test area for 1000km have 
punctures at the following distances: 
   Tire 1:  No punctures 
   Tire 2:  400km, 900km 
   Tire 3:  200km 
 
Punctures are a random failure with constant failure rate therefore 
an exponential distribution would be appropriate. Due to an 
exponential distribution being homogeneous in time, the renewal 
process of the second tire failing twice with a repair can be 
considered as two separate tires on test with single failures. See 
example in section 1.1.6. 
 
Total distance on test is 3 × 1000 = 3000km. Total number of 
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failures is 3. Therefore using MLE the estimate of 𝜆𝜆: 
 

�̂�𝜆 =
nF
𝑡𝑡𝑇𝑇

=
3

3000 = 1E-3 

 
With 90% confidence interval (distance terminated test): 

�
𝜒𝜒(0.05)
2 (6)
6000 = 0.272𝐸𝐸-3,

𝜒𝜒(0.95)
2 (8)
6000 = 2.584𝐸𝐸-3�  

 
A Bayesian point estimate using the Jeffery non-informative 
improper prior 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(12, 0), with posterior 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 3.5, 3000) has 
a point estimate: 

�̂�𝜆 = E[𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 3.5, 3000)] =
3.5

3000
= 1.16̇E − 3 

 
With 90% confidence interval using inverse Gamma cdf: 

[𝐹𝐹𝐺𝐺−1(0.05) = 0.361𝐸𝐸-3, 𝐹𝐹𝐺𝐺−1(0.95) = 2.344𝐸𝐸-3]  
 

Characteristics  Constant Failure Rate. The exponential distribution is defined by a 
constant failure rate, 𝜆𝜆. This means the component is not subject to 
wear or accumulation of damage as time increases. 
 
 𝒇𝒇(𝟎𝟎)  =  𝝀𝝀. As can be seen, 𝜆𝜆 is the initial value of the distribution. 
Increases in 𝜆𝜆 increase the probability density at 𝑓𝑓(0). 
 
HPP. The exponential distribution is the time to failure distribution of 
a single event in the Homogeneous Poisson Process (HPP). 
 

𝑇𝑇~𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 
Scaling property 

𝑉𝑉𝑇𝑇~𝐸𝐸𝑥𝑥𝑝𝑝 �𝑡𝑡;
𝜆𝜆
𝑉𝑉� 

Minimum property 

min {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛}~𝐸𝐸𝑥𝑥𝑝𝑝�𝑡𝑡;�𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 

Variate Generation property 

𝐹𝐹−1(𝑢𝑢) =
ln(1 − 𝑢𝑢)

−𝜆𝜆 ,    0 < 𝑢𝑢 < 1 
Memoryless property. 

Pr(𝑇𝑇 > 𝑡𝑡 + 𝑥𝑥|𝑇𝑇 > 𝑡𝑡) = Pr (𝑇𝑇 > 𝑥𝑥) 
 
Properties from (Leemis & McQueston 2008). 

Applications No Wearout. The exponential distribution is used to model 
occasions when there is no wearout or cumulative damage. It can be 
used to approximate the failure rate in a component’s useful life 
period (after burn in and before wear out).  
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Homogeneous Poisson Process (HPP). The exponential 
distribution is used to model the inter arrival times in a repairable 
system or the arrival times in queuing models. See Poisson and 
Gamma distribution for more detail. 
 
Electronic Components. Some electronic components such as 
capacitors or integrated circuits have been found to follow an 
exponential distribution. Early efforts at collecting reliability data 
assumed a constant failure rate and therefore many reliability 
handbooks only provide a failure rate estimates for components.   
 
Random Shocks. It is common for the exponential distribution to 
model the occurrence of random shocks An example is the failure of 
a vehicle tire due to puncture from a nail (random shock). The 
probability of failure in the next mile is independent of how many 
miles the tire has travelled (memoryless). The probability of failure 
when the tire is new is the same as when the tire is old (constant 
failure rate). 
 
In general component life distributions do not have a constant failure 
rate, for example due to wear or early failures. Therefore the 
exponential distribution is often inappropriate to model most life 
distributions, particularly mechanical components. 
 

Resources 

Online: 
http://www.weibull.com/LifeDataWeb/the_exponential_distribution.h
tm 
http://mathworld.wolfram.com/ExponentialDistribution.html 
http://en.wikipedia.org/wiki/Exponential_distribution  
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Balakrishnan, N. & Basu, A.P., 1996. Exponential Distribution: 
Theory, Methods and Applications 1st ed., CRC.   
 
Nelson, W.B., 1982. Applied Life Data Analysis, Wiley-Interscience.   

Relationship to Other Distributions 

2-Para 
Exponential 
Distribution 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡;𝜇𝜇,𝛽𝛽) 

Special Case: 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) = 𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; µ = 0, β =
1
𝜆𝜆) 

Gamma 
Distribution 
 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡;𝑘𝑘, 𝜆𝜆) 

Let  
𝑇𝑇1 …𝑇𝑇𝑘𝑘~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)           𝑉𝑉𝑛𝑛𝑑𝑑           𝑇𝑇𝑡𝑡 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑘𝑘 

Then 
𝑇𝑇𝑡𝑡~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

The gamma distribution is the probability density function of the sum 
of k exponentially distributed time random variables sharing the 
same constant rate of occurrence, 𝜆𝜆. This is a Homogeneous 
Poisson Process.  

http://www.weibull.com/LifeDataWeb/the_exponential_distribution.htm
http://www.weibull.com/LifeDataWeb/the_exponential_distribution.htm
http://mathworld.wolfram.com/ExponentialDistribution.html
http://en.wikipedia.org/wiki/Exponential_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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Special Case: 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) = 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡;𝑘𝑘 = 1,𝜆𝜆) 

Poisson 
Distribution 
 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘; 𝜇𝜇) 

Let  
𝑇𝑇1,𝑇𝑇2 … ~𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Given 
𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝐾𝐾 + 𝑇𝑇𝐾𝐾+1 … 

Then 
𝐾𝐾~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k; µ = 𝜆𝜆𝑡𝑡) 

 
The Poisson distribution is the probability of observing exactly k 
occurrences within a time interval [0, t] where the inter-arrival times 
of each occurrence is exponentially distributed. This is a 
Homogeneous Poisson Process. 
 
Special Cases: 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k = 1;µ = 𝜆𝜆𝑡𝑡) = 𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Weibull 
Distribution 
 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Let  
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = X1/β 

Then 

𝑌𝑌~𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝛼𝛼 = 𝜆𝜆
−1
𝛽𝛽 ,𝛽𝛽) 

Special Case: 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠 �𝑡𝑡;𝛼𝛼 =
1
𝜆𝜆 ,𝛽𝛽 = 1� 

Geometric 
Distribution 
 
𝐺𝐺𝑒𝑒𝐶𝐶𝑚𝑚𝑒𝑒𝑡𝑡𝑟𝑟𝑖𝑖𝑐𝑐(𝑘𝑘;𝑝𝑝) 

Let  
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)        𝑉𝑉𝑛𝑛𝑑𝑑         𝑌𝑌 = [𝑋𝑋], 𝑌𝑌 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒𝑟𝑟 𝐶𝐶𝑓𝑓 𝑋𝑋 

Then 
𝑌𝑌~𝐺𝐺𝑒𝑒𝐶𝐶𝑚𝑚𝑒𝑒𝑡𝑡𝑟𝑟𝑖𝑖𝑐𝑐(𝛼𝛼,𝛽𝛽) 

 
The geometric distribution is the discrete equivalent of the 
continuous exponential distribution. The geometric distribution is 
also memoryless. 

Rayleigh 
Distribution 
 
𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝑡𝑡;𝛼𝛼) 

Let  
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = √X 

Then 

𝑌𝑌~𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝛼𝛼 =
1
√𝜆𝜆

) 

Chi-square  
𝜒𝜒2(𝑥𝑥;𝐶𝐶) 

Special Case: 

𝜒𝜒2(𝑥𝑥; 𝐶𝐶 = 2) = 𝐸𝐸𝑥𝑥𝑝𝑝 �𝑥𝑥; λ =
1
2� 

Pareto 
Distribution 
𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝑡𝑡;𝜃𝜃,𝛼𝛼) 

Let  
𝑌𝑌~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑋𝑋 = ln(𝑌𝑌 𝜃𝜃⁄ ) 

Then 
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆 = 𝛼𝛼) 
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Logistic 
Distribution 
𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(µ , 𝑠𝑠) 

Let  

𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆 = 1)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = ln �
𝑒𝑒−𝑋𝑋

1 + 𝑒𝑒−𝑋𝑋� 

Then 
𝑌𝑌~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(0,1) 

(Hastings et al. 2000, p.127): 
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2.2. Lognormal Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝜇𝜇𝑁𝑁 −∞ < 𝜇𝜇𝑁𝑁 <  ∞ 

Scale parameter: The mean of the 
normally distributed ln(𝑥𝑥). This 
parameter only determines the scale 
and not the location as in a normal 
distribution. 

𝜇𝜇𝑁𝑁 = ln �
𝜇𝜇2

�𝜎𝜎2 + 𝜇𝜇2
� 

σN2  σN2 > 0 

Shape parameter: The standard 
deviation of the normally distributed 
ln(x). This parameter only determines 
the shape and not the scale as in a 
normal distribution. 

σN2 = ln �
𝜎𝜎2 + 𝜇𝜇2

𝜇𝜇2 � 

Limits t > 0 

Distribution Formulas 

PDF 

𝑓𝑓(𝑡𝑡) =
1

𝜎𝜎𝑁𝑁𝑡𝑡√2𝜋𝜋
exp � −

1
2 �

ln (𝑡𝑡) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁

�
2

� 

 

=
1

𝜎𝜎𝑁𝑁. 𝑡𝑡 𝜙𝜙 �
𝑠𝑠𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

 
where 𝜙𝜙 is the standard normal pdf. 

CDF 

𝐹𝐹(𝑡𝑡) =
1

𝜎𝜎𝑁𝑁√2𝜋𝜋
�

1
𝑡𝑡∗ exp � −

1
2�

ln(𝑡𝑡∗) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁

�
2

�
𝑡𝑡

0
𝑑𝑑𝑡𝑡∗ 

where 𝑡𝑡∗ is the time variable over which the pdf is integrated. 
 

=
1
2

+
1
2 erf�

𝑠𝑠𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁√2

� 

 

= Φ�
ln(𝑡𝑡) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

 
where Φ is the standard normal cdf. 

Reliability R(t) = 1 −Φ�
ln (𝑡𝑡) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

1 −Φ�ln(𝑥𝑥 + t) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁

�

1 −Φ�ln(t) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁

�
 

Where  
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𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

𝑢𝑢(𝑡𝑡) =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡)  

lim
𝑡𝑡→∞

𝑢𝑢(𝑡𝑡) ≈
𝜎𝜎𝑁𝑁2𝑡𝑡

ln(𝑡𝑡) − 𝜇𝜇𝑁𝑁
[1 + 𝐶𝐶(1)] 

Where 𝐶𝐶(1) is Landau's notation. (Kleiber & Kotz 2003, p.114) 

Hazard Rate ℎ(𝑡𝑡) =
𝜙𝜙 �ln(𝑡𝑡) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
�

𝑡𝑡.𝜎𝜎𝑁𝑁 �1 −Φ �ln(𝑡𝑡) − 𝜇𝜇𝑁𝑁
𝜎𝜎𝑁𝑁

��
 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = −ln [𝑅𝑅(𝑡𝑡)] 

Properties and Moments 

Median 𝑒𝑒(𝜇𝜇𝑁𝑁)  

Mode 𝑒𝑒(𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁2 )  

Mean - 1st Raw Moment 
𝑒𝑒
�𝜇𝜇𝑁𝑁+

𝜎𝜎𝑁𝑁2
2 � 

Variance - 2nd Central Moment �𝑒𝑒𝜎𝜎𝑁𝑁2 − 1�. 𝑒𝑒2𝜇𝜇𝑁𝑁+𝜎𝜎𝑁𝑁2  

Skewness - 3rd Central Moment �𝑒𝑒𝜎𝜎2 + 2�.�𝑒𝑒𝜎𝜎2 − 1 

Excess kurtosis - 4th Central Moment 𝑒𝑒4𝜎𝜎𝑁𝑁2 + 2𝑒𝑒3𝜎𝜎𝑁𝑁2 + 3𝑒𝑒2𝜎𝜎𝑁𝑁2 − 3 

Characteristic Function Deriving a unique characteristic equation 
is not trivial and complex series solutions 
have been proposed. (Leipnik 1991) 

100α% Percentile Function 𝑡𝑡𝛼𝛼 = e(𝜇𝜇𝑁𝑁+𝑧𝑧𝛼𝛼.𝜎𝜎𝑁𝑁)  
 
where 𝑧𝑧𝛼𝛼 is the 100pthof the standard 
normal distribution 
 

𝑡𝑡α = e(𝜇𝜇𝑁𝑁+𝜎𝜎𝑁𝑁Φ−1(𝛼𝛼)) 
  

Parameter Estimation 

Plotting Method 

Least Mean 
Square      
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis 𝜇𝜇𝑁𝑁� = −
𝑐𝑐
𝑚𝑚 

𝜎𝜎𝑁𝑁� =
1
𝑚𝑚 

ln (𝑡𝑡𝑖𝑖) 𝑖𝑖𝑛𝑛𝐶𝐶𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚[𝐹𝐹(𝑡𝑡𝑖𝑖)] 
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Maximum Likelihood Function 

Likelihood 
Functions �

1
𝜎𝜎𝑁𝑁. tiF

𝜙𝜙(𝑧𝑧𝑖𝑖𝐹𝐹)
nF

i=1�������������
failures

.� �1 −Φ�𝑧𝑧𝑖𝑖𝑆𝑆��
nS

i=1�������������
survivors

.� �Φ�𝑧𝑧𝑖𝑖𝑅𝑅𝑅𝑅� −Φ�𝑧𝑧𝑖𝑖𝐿𝐿𝑅𝑅��
nI

i=1�����������������
interval failures

 

where 

𝑧𝑧𝑖𝑖𝑖𝑖 = �
ln(tix) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

 

Log-Likelihood 
Function Λ(µN,σN|E) = � ln �

1
𝜎𝜎𝑁𝑁. 𝑡𝑡𝑖𝑖𝐹𝐹

𝜙𝜙�𝑧𝑧𝑖𝑖𝐹𝐹��
nF

i=1�������������
failures

+ � ln�1 −Φ�𝑧𝑧𝑖𝑖𝑆𝑆��
nS

i=1�������������
survivors

 

                            +� ln�Φ�𝑧𝑧𝑖𝑖𝑅𝑅𝑅𝑅� −Φ�𝑧𝑧𝑖𝑖𝐿𝐿𝑅𝑅��
nI

i=1�����������������
interval failures

 

where 

𝑧𝑧𝑖𝑖𝑖𝑖 = �
ln(tix) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

∂Λ
∂µN

= 0 
solve for 𝜇𝜇𝑁𝑁 to get MLE 𝜇𝜇𝑁𝑁� : 

∂Λ
∂µN

=
−µN. NF

σN
+

1
σN

� ln (tiF)
nF

i=1���������������
failures

+
1
σN

�
ϕ�ziS�

1 −Φ�ziS�
 

nS

i=1�����������
survivors

 

          −�
1
σN

�
ϕ�ziRI� − ϕ�ziLI�
Φ�ziRI� − Φ�ziLI�

�
nI

i=1�����������������
interval failures

= 0 

where 

𝑧𝑧𝑖𝑖𝑖𝑖 = �
ln(tix) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

∂Λ
∂σN

= 0 
solve for 𝜎𝜎𝑁𝑁 to get 𝜎𝜎𝑁𝑁�: 

∂Λ
∂σN

=
−nF
σN

+
1
σN3

��ln (tiF) − µN�
2

nF

i=1�������������������
failures

 +
1
σN

�
ziS.ϕ�ziS�

1 −Φ�ziS�
 

nS

i=1�����������
survivors

 

          −�
1
σN

�
ziRI.ϕ�ziRI� − ziLIϕ�ziLI�

Φ�ziRI� − Φ�ziLI�
�

nI

i=1���������������������
interval failures

= 0 

where 

𝑧𝑧𝑖𝑖𝑖𝑖 = �
ln(tix) − 𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
� 

MLE Point 
Estimates 

When there is only complete failure data the point estimates can be 
given as: 

𝜇𝜇𝑁𝑁� =
∑ ln (𝑡𝑡𝑖𝑖𝐹𝐹)

nF
      σN2� =

∑�ln�𝑡𝑡𝑖𝑖𝐹𝐹� − 𝜇𝜇𝑡𝑡� �
2

nF
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Note: In almost all cases the MLE methods for a normal distribution can 
be used by taking the 𝑠𝑠𝑛𝑛(𝑋𝑋). However Normal distribution estimation 
methods cannot be used with interval data. (Johnson et al. 1994, p.220)  
 
In most cases the unbiased estimators are used: 

𝜇𝜇𝑁𝑁� =
∑ ln (𝑡𝑡𝑖𝑖𝐹𝐹)

nF
      σN2� =

∑�ln�𝑡𝑡𝑖𝑖𝐹𝐹� − 𝜇𝜇𝑡𝑡� �
2

nF − 1  

 

Fisher 
Information 

𝐼𝐼(𝜇𝜇𝑁𝑁,𝜎𝜎𝑁𝑁2) =

⎣
⎢
⎢
⎡

1
𝜎𝜎𝑁𝑁2

0

0 −
1

2𝜎𝜎4⎦
⎥
⎥
⎤
 

(Kleiber & Kotz 2003, p.119).  

100𝛾𝛾% 
Confidence 
Intervals  
 
(for complete 
data) 

 1-Sided  Lower 2-Sided Lower 2-Sided  Upper 

𝝁𝝁𝑵𝑵  𝜇𝜇𝑁𝑁� −
𝜎𝜎𝑁𝑁�
√𝑛𝑛𝐹𝐹

𝑡𝑡γ(nF − 1) 𝜇𝜇𝑁𝑁� −
𝜎𝜎𝑁𝑁�
√𝑛𝑛𝐹𝐹

𝑡𝑡�1−γ2 �(nF − 1) 𝜇𝜇𝑁𝑁� +
𝜎𝜎𝑁𝑁�
√𝑛𝑛𝐹𝐹

𝑡𝑡�1−γ2 �(nF − 1) 

𝝈𝝈𝑵𝑵𝝈𝝈   𝜎𝜎𝑁𝑁2�
(𝑛𝑛𝐹𝐹 − 1)
𝜒𝜒𝛾𝛾2(𝑛𝑛𝐹𝐹 − 1)

 𝜎𝜎𝑁𝑁2�
(𝑛𝑛𝐹𝐹 − 1)

𝜒𝜒
�1+γ

2 �
2 (𝑛𝑛𝐹𝐹 − 1)

 𝜎𝜎𝑁𝑁2�
(𝑛𝑛𝐹𝐹 − 1)

𝜒𝜒
�1−γ

2 �
2 (𝑛𝑛𝐹𝐹 − 1)

 

Where 𝑡𝑡γ(nF − 1) is the 100𝛾𝛾th percentile of the t-distribution with 𝑛𝑛𝐹𝐹 − 1 
degrees of freedom and 𝜒𝜒𝛾𝛾2(𝑛𝑛𝐹𝐹 − 1) is the 100𝛾𝛾th  percentile of the 𝜒𝜒2-
distribution with 𝑛𝑛𝐹𝐹 − 1 degrees of freedom. (Nelson 1982, pp.218-219) 

 1 Sided - Lower 2 Sided 

𝝁𝝁 
exp �𝜇𝜇𝑁𝑁� +

𝜎𝜎𝑁𝑁2�

2
− 𝑍𝑍1−𝛼𝛼�

𝜎𝜎𝑁𝑁2�

𝑛𝑛𝐹𝐹
+

𝜎𝜎𝑁𝑁4�

2(𝑛𝑛𝐹𝐹 − 1)� exp �𝜇𝜇𝑁𝑁� +
𝜎𝜎𝑁𝑁2�

2
± 𝑍𝑍1−𝛼𝛼 2�

�𝜎𝜎𝑁𝑁
2�

𝑛𝑛𝐹𝐹
+

𝜎𝜎𝑁𝑁4�

2(𝑛𝑛𝐹𝐹 − 1)� 

These formulas are the Cox approximation for the confidence intervals 
of the lognormal distribution mean where 𝑍𝑍𝑝𝑝 = 𝛷𝛷−1(𝑝𝑝), the inverse of 
the standard normal cdf. (Zhou & Gao 1997) 
 
Zhou & Gao recommend using the parametric bootstrap method for 
small sample sizes. (Angus 1994) 

Bayesian 

Non-informative Priors when 𝝈𝝈𝑵𝑵𝝈𝝈  is known,  𝝅𝝅𝟎𝟎(𝝁𝝁𝑵𝑵)  
 (Yang and Berger 1998, p.22) 

Type Prior Posterior 

Uniform Proper 
Prior with limits  

𝜇𝜇𝑁𝑁 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Normal Distribution 

For a ≤ µN ≤ b 

𝑐𝑐.𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µN;  
∑ ln 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝑛𝑛𝐹𝐹

,
σN2

nF
� 

Otherwise  𝜋𝜋(𝜇𝜇𝑁𝑁) = 0 
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All 1 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µN;  

∑ ln 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝑛𝑛𝐹𝐹

,
σN2

nF
� 

when 𝜇𝜇𝑁𝑁 ∈ (∞,∞) 

Non-informative Priors when 𝝁𝝁𝑵𝑵 is known,  𝝅𝝅𝑯𝑯(𝛔𝛔𝐍𝐍𝝈𝝈)  
 (Yang and Berger 1998, p.23) 

Type Prior Posterior 

Uniform Proper 
Prior with limits  

𝜎𝜎𝑁𝑁2 ∈ [𝑉𝑉, 𝑏𝑏] 
 

1
𝑏𝑏 − 𝑉𝑉 Truncated Inverse Gamma Distribution 

For a ≤ σN2 ≤ b 

𝑐𝑐. 𝐼𝐼𝐺𝐺 �σN2 ;  
(𝑛𝑛𝐹𝐹 − 2)

2 ,
SN2

2 � 

Otherwise  𝜋𝜋(𝜎𝜎𝑁𝑁2) = 0 

Uniform Improper 
Prior with limits  

𝜎𝜎𝑁𝑁2 ∈ (0,∞) 

1 
𝐼𝐼𝐺𝐺 �σN2 ;  

(𝑛𝑛𝐹𝐹 − 2)
2 ,

SN2

2 � 

See section 1.7.1 

Jeffery’s, 
Reference, MDIP 
Prior 

1
𝜎𝜎𝑁𝑁2

 

 

𝐼𝐼𝐺𝐺 �σN2 ;  
𝑛𝑛𝐹𝐹
2 ,

SN2

2 � 

with limits 𝜎𝜎𝑁𝑁2 ∈ (0,∞) 
See section 1.7.1 

Non-informative Priors when 𝝁𝝁𝑵𝑵 and 𝝈𝝈𝑵𝑵𝝈𝝈  are unknown,  𝝅𝝅𝑯𝑯(𝝁𝝁𝑵𝑵,σN2 )  
 (Yang and Berger 1998, p.23) 

Type Prior Posterior 

Improper Uniform 
with limits: 

𝜇𝜇𝑁𝑁 ∈ (∞,∞) 
𝜎𝜎𝑁𝑁2 ∈ (0,∞) 

 

1 
𝜋𝜋(𝜇𝜇𝑁𝑁|𝐸𝐸)~𝑇𝑇 �µN;𝑛𝑛𝐹𝐹 − 3, 𝑡𝑡𝑁𝑁���,

SN2

𝑛𝑛𝐹𝐹(𝑛𝑛𝐹𝐹 − 3)� 

See section 1.7.2 

𝜋𝜋(σN2 |𝐸𝐸)~𝐼𝐼𝐺𝐺 �σN2 ;
(𝑛𝑛𝐹𝐹 − 3)

2 ,
SN2

2 � 

See section 1.7.1 

Jeffery’s Prior 1
𝜎𝜎𝑁𝑁4

 

 

𝜋𝜋(𝜇𝜇𝑁𝑁|𝐸𝐸)~𝑇𝑇 �µN;𝑁𝑁𝐹𝐹 + 1, 𝑡𝑡𝑁𝑁���,
S2

𝑛𝑛𝐹𝐹(𝑛𝑛𝐹𝐹 + 1)� 

when 𝜇𝜇𝑁𝑁 ∈ (∞,∞) 
See section 1.7.2 

𝜋𝜋(σN2 |𝐸𝐸)~𝐼𝐼𝐺𝐺 �σN2 ;
(𝑛𝑛𝐹𝐹 + 1)

2 ,
SN2

2 � 

when 𝜎𝜎𝑁𝑁2 ∈ (0,∞) 
See section 1.7.1 

Reference Prior 
ordering  {𝜙𝜙,𝜎𝜎} 

𝜋𝜋𝑜𝑜(𝜙𝜙,𝜎𝜎𝑁𝑁2)

∝
1

𝜎𝜎𝑁𝑁�2 + 𝜙𝜙2
 

where 
𝜙𝜙 = 𝜇𝜇𝑁𝑁/𝜎𝜎𝑁𝑁 

No closed form 
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Reference where  
𝜇𝜇 and 𝜎𝜎2 are 
separate groups. 
 
MDIP Prior 

1
𝜎𝜎𝑁𝑁

 𝜋𝜋(𝜇𝜇𝑁𝑁|𝐸𝐸)~𝑇𝑇 �µN;𝑁𝑁𝐹𝐹 − 1, 𝑡𝑡𝑁𝑁���,
SN2

nF(nF − 1)� 

when 𝜇𝜇𝑁𝑁 ∈ (∞,∞) 
See section 1.7.2 

𝜋𝜋(σN2 |𝐸𝐸)~𝐼𝐼𝐺𝐺 �σN2 ;
(𝑛𝑛𝐹𝐹 − 1)

2
,
𝑆𝑆𝑁𝑁2

2 � 

when 𝜎𝜎𝑁𝑁2 ∈ (0,∞) 
See section 1.7.1 

where 

𝑆𝑆𝑁𝑁2 = �(ln 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑁𝑁���)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

        and         𝑡𝑡𝑁𝑁��� =
1

nF
� ln 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior Parameters 

𝜎𝜎𝑁𝑁2 
from 

𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝑡𝑡; 𝜇𝜇𝑁𝑁,𝜎𝜎𝑁𝑁2) 

Lognormal 
with known 

𝜇𝜇𝑁𝑁 

𝑛𝑛𝐹𝐹 
failures 
at times 

𝑡𝑡𝑖𝑖 

Gamma 𝑘𝑘0, 𝜆𝜆0 

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹/2 
 

𝜆𝜆 = 𝜆𝜆𝑜𝑜 +
1
2
�(ln 𝑡𝑡𝑖𝑖 − 𝜇𝜇𝑁𝑁)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1  

𝜇𝜇𝑁𝑁 
from 

𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝑡𝑡; 𝜇𝜇𝑁𝑁,𝜎𝜎𝑁𝑁2) 

Lognormal 
with known 

𝜎𝜎𝑁𝑁2 

𝑛𝑛𝐹𝐹 
failures 
at times 

𝑡𝑡𝑖𝑖 

Normal 𝜇𝜇𝑜𝑜,𝜎𝜎𝑜𝑜2 

𝜇𝜇 =

µ0
σ02

+
∑ ln (𝑡𝑡𝑖𝑖)
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝜎𝜎𝑁𝑁2

1
𝜎𝜎02

+ 𝑛𝑛𝐹𝐹
𝜎𝜎𝑁𝑁2

 

 

σ2 =
1

1
σ02

+ nF
𝜎𝜎𝑁𝑁2

 

Description , Limitations and Uses 

Example 5 components are put on a test with the following failure times: 
98, 116, 2485, 2526, , 2920 hours 

 
Taking the natural log of these failure times allows us to use a normal 
distribution to approximate the parameters. ln (𝑡𝑡𝑖𝑖): 

4.590, 4.752, 7.979, 7.818, 7.834 𝑠𝑠𝑛𝑛(hours) 
 
MLE Estimates are: 

𝜇𝜇𝑁𝑁� =
∑ ln�𝑡𝑡𝑖𝑖𝐹𝐹�

nF
=

32.974
5 = 6.595 

      𝜎𝜎𝑁𝑁2� =
∑�ln�𝑡𝑡𝑖𝑖𝐹𝐹� − 𝜇𝜇𝑡𝑡� �

2

nF − 1 = 3.091 

 
90% confidence interval for 𝜇𝜇𝑁𝑁: 

�𝜇𝜇𝑁𝑁� −
𝜎𝜎𝑁𝑁�
√4

𝑡𝑡{0.95}(4), 𝜇𝜇𝑁𝑁� +
𝜎𝜎𝑁𝑁�
√4

𝑡𝑡{0.95}(4)�  



56  Common Life Distributions      
Lo

gn
or

m
al

 

[4.721,   8.469]  
 
90% confidence interval for 𝜎𝜎𝑁𝑁2: 

�𝜎𝜎𝑁𝑁2�
4

𝜒𝜒{0.95}
2 (4)

, 𝜎𝜎𝑁𝑁2�
4

𝜒𝜒{0.05}
2 (4)

�  

[1.303,   17.396]  
 
 
A Bayesian point estimate using the Jeffery non-informative improper 
prior 1 𝜎𝜎𝑁𝑁4⁄  with posterior for  𝜇𝜇𝑁𝑁~𝑇𝑇(6, 6.595, 0.412 ) and 𝜎𝜎𝑁𝑁2~𝐼𝐼𝐺𝐺(3,
6.182)  has a point estimates: 
 

𝜇𝜇𝑁𝑁� = E[𝑇𝑇(6,6.595,0.412 )] = µ = 6.595 
 

𝜎𝜎𝑁𝑁2� = E[𝐼𝐼𝐺𝐺(3,6.182)] =
6.182

2
= 3.091 

 
With 90% confidence intervals: 
𝜇𝜇𝑁𝑁  

[𝐹𝐹𝑇𝑇−1(0.05) = 5.348, 𝐹𝐹𝑇𝑇−1(0.95) = 7.842]  
𝜎𝜎𝑁𝑁2  

[1/𝐹𝐹𝐺𝐺−1(0.95) = 0.982, 1/𝐹𝐹𝐺𝐺−1(0.05) = 7.560] 
 

Characteristics  𝝁𝝁𝑵𝑵  Characteristics. 𝜇𝜇𝑁𝑁 determines the scale and not the location 
as in a normal distribution. The distribution if fixed at f(0)=0 and an 
increase in the scale parameter stretches the distribution across the 
x-axis. This has the effect of increasing the mode, mean and median 
of the distribution.  
 
𝝈𝝈𝑵𝑵 Characteristics. 𝜎𝜎𝑁𝑁 determines the shape and not the scale as 
in a normal distribution. For values of σN > 1 the distribution rises very 
sharply at the beginning and decreases with a shape similar to an 
Exponential or Weibull with 0 < 𝛽𝛽 < 1. As σN → 0 the mode, mean 
and median converge to 𝑒𝑒𝜇𝜇𝑁𝑁. The distribution becomes narrower and 
approaches a Dirac delta function at 𝑡𝑡 = 𝑒𝑒𝜇𝜇𝑁𝑁. 
 
Hazard Rate. (Kleiber & Kotz 2003, p.115)The hazard rate is 
unimodal with ℎ(0) = 0 and all dirivitives of ℎ’(𝑡𝑡) = 0 and a slow 
decrease to zero as 𝑡𝑡 → 0. The mode of the hazard rate: 

𝑡𝑡𝑚𝑚 = exp (𝜇𝜇 + 𝑧𝑧𝑚𝑚𝜎𝜎) 
where 𝑧𝑧𝑚𝑚 is given by: 

(𝑧𝑧𝑚𝑚 + 𝜎𝜎𝑁𝑁) =
𝜙𝜙(𝑧𝑧𝑚𝑚)

1 −Φ(𝑧𝑧𝑚𝑚) 

therefore −𝜎𝜎𝑁𝑁 < 𝑧𝑧𝑚𝑚 < −𝜎𝜎𝑁𝑁 + 𝜎𝜎−1 and therefore: 
 

𝑒𝑒𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁2 < 𝑡𝑡𝑚𝑚 < 𝑒𝑒𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁2+1 
As 𝜎𝜎𝑁𝑁 → ∞, 𝑡𝑡𝑚𝑚 →  𝑒𝑒𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁2  and so for large 𝜎𝜎𝑁𝑁: 

max ℎ(𝑡𝑡) ≈
exp�𝜇𝜇𝑁𝑁 − 1

2𝜎𝜎𝑁𝑁
2�

𝜎𝜎𝑁𝑁√2𝜋𝜋
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As 𝜎𝜎𝑁𝑁 → 0, 𝑡𝑡𝑚𝑚 →  𝑒𝑒𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁2+1 and so for large 𝜎𝜎𝑁𝑁: 

max ℎ(𝑡𝑡) ≈
1

𝜎𝜎𝑁𝑁2𝑒𝑒𝜇𝜇𝑁𝑁−𝜎𝜎𝑁𝑁
2+1

 

 
Mean / Median / Mode: 

𝑚𝑚𝐶𝐶𝑑𝑑𝑒𝑒(𝑋𝑋) < 𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑉𝑉𝑛𝑛(𝑋𝑋) < 𝐸𝐸[𝑋𝑋] 
 
 
Scale/Product Property: 
Let: 

𝑉𝑉𝑗𝑗𝑋𝑋𝑗𝑗~𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁�𝜇𝜇𝑁𝑁𝑗𝑗 ,σNj2 � 
If 𝑋𝑋𝑗𝑗 and 𝑋𝑋𝑗𝑗+1 are independent: 

�𝑉𝑉𝑗𝑗𝑋𝑋𝑗𝑗 ~𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁 ���𝜇𝜇𝑁𝑁𝑗𝑗 + ln�𝑉𝑉𝑗𝑗��,�𝜎𝜎𝑁𝑁𝑗𝑗2 � 
 
Lognormal versus Weibull. In analyzing life data to these 
distributions it is often the case that both may be a good fit, especially 
in the middle of the distribution. The Weibull distribution has an 
earlier lower tail and produces a more pessimistic estimate of the 
component life. (Nelson 1990, p.65) 
 

Applications General Life Distributions. The lognormal distribution has been 
found to accurately model many life distributions and is a popular 
choice for life distributions. The increasing hazard rate in early life 
models the weaker subpopulation (burn in) and the remaining 
decreasing hazard rate describes the main population. In particular 
this has been applied to some electronic devices and fatigue-fracture 
data. (Meeker & Escobar 1998, p.262) 
 
Failure Modes from Multiplicative Errors. The lognormal 
distribution is very suitable for failure processes that are a result of 
multiplicative errors. Specific applications include failure of 
components due to fatigue cracks. (Provan 1987) 
 
Repair Times. The lognormal distribution has commonly been used 
to model repair times. It is natural for a repair time probability to 
increase quickly to a mode value. For example very few repairs have 
an immediate or quick fix. However, once the time of repair passes 
the mean it is likely that there are serious problems, and the repair 
will take a substantial amount of time.  
 
Parameter Variability. The lognormal distribution can be used to 
model parameter variability. This was done when estimating the 
uncertainty in the parameter 𝜆𝜆 in a Nuclear Reactor Safety Study 
(NUREG-75/014). 
 
Theory of Breakage. The distribution models particle sizes 
observed in breakage processes (Crow & Shimizu 1988) 

Resources Online: 
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http://www.weibull.com/LifeDataWeb/the_lognormal_distribution.ht
m  
http://mathworld.wolfram.com/LogNormalDistribution.html 
http://en.wikipedia.org/wiki/Log-normal_distribution  
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Crow, E.L. & Shimizu, K., 1988. Lognormal distributions, CRC 
Press.   
 
Aitchison, J.J. & Brown, J., 1957. The Lognormal Distribution, New 
York: Cambridge University Press.   
 
Nelson, W.B., 1982. Applied Life Data Analysis, Wiley-Interscience.   
 

Relationship to Other Distributions 

Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎2) 

Let; 
𝑋𝑋~𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝜇𝜇𝑁𝑁,σN2 ) 

𝑌𝑌 = ln (𝑋𝑋) 
Then: 

𝑌𝑌~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2) 
Where: 

𝜇𝜇𝑁𝑁 = ln �
𝜇𝜇2

�𝜎𝜎2 + 𝜇𝜇2
�  ,       𝜎𝜎𝑁𝑁 = ln �

𝜎𝜎2 + 𝜇𝜇2

𝜇𝜇2 � 

 

http://www.weibull.com/LifeDataWeb/the_lognormal_distribution.htm
http://www.weibull.com/LifeDataWeb/the_lognormal_distribution.htm
http://mathworld.wolfram.com/LogNormalDistribution.html
http://en.wikipedia.org/wiki/Log-normal_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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2.3. Weibull Continuous Distribution 
 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝛼𝛼 𝛼𝛼 > 0 

Scale Parameter: The value of 𝛼𝛼 
equals the 63.2th percentile and has 
a unit equal to 𝑡𝑡. Note that this is not 
equal to the mean. 

𝛽𝛽 𝛽𝛽 > 0 

Shape Parameter: Also known as the 
slope (referring to a linear CDF plot) 𝛽𝛽 
determines the shape of the 
distribution. 

Limits 𝑡𝑡 ≥  0 

Distribution Formulas 

PDF 𝑓𝑓(𝑡𝑡) =
𝛽𝛽𝑡𝑡𝛽𝛽−1

𝛼𝛼𝛽𝛽
𝑒𝑒−�

𝑡𝑡
𝛼𝛼�

𝛽𝛽

 

CDF 𝐹𝐹(𝑡𝑡) = 1 −𝑒𝑒−�
𝑡𝑡
𝛼𝛼�

𝛽𝛽

 

Reliability R(t) = 𝑒𝑒−�
𝑡𝑡
𝛼𝛼�

𝛽𝛽

 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + x)
𝑅𝑅(𝑡𝑡) = 𝑒𝑒

�𝑡𝑡
𝛽𝛽−(𝑡𝑡+x)𝛽𝛽

𝛼𝛼𝛽𝛽 �
 

Where  
𝑡𝑡 is the given time we know the component has survived to 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

(Kleiber & Kotz 2003, p.176) 

𝑢𝑢(𝑡𝑡) = 𝑒𝑒�
𝑡𝑡
𝛼𝛼�

𝛽𝛽

� 𝑒𝑒−�
𝑖𝑖
𝛼𝛼�

𝛽𝛽

 𝑑𝑑𝑥𝑥
∞

t
 

which has the asymptotic property of: 
lim
𝑡𝑡→∞

𝑢𝑢(𝑡𝑡) = 𝑡𝑡1−𝛽𝛽 
 

Hazard Rate ℎ(𝑡𝑡) =
β
α. �

𝑡𝑡
𝛼𝛼�

𝛽𝛽−1
 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = �

𝑡𝑡
𝛼𝛼�

𝛽𝛽
 

Properties and Moments 

Median 
𝛼𝛼�𝑠𝑠𝑛𝑛(2)�

1
𝛽𝛽   

Mode 
𝛼𝛼 �

𝛽𝛽 − 1
𝛽𝛽 �

1
𝛽𝛽

     if   𝛽𝛽 ≥ 1  

otherwise no mode exists 
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Mean - 1st Raw Moment 𝛼𝛼Γ �1 +
1
𝛽𝛽� 

Variance - 2nd Central Moment 𝛼𝛼2 �Γ �1 +
2
𝛽𝛽� − Γ2 �1 +

1
𝛽𝛽�� 

Skewness - 3rd Central Moment Γ �1 + 3
β�α

3 − 3µσ2 − µ3

σ3  

Excess kurtosis - 4th Central Moment −6Γ14 + 12Γ12Γ2 − 3Γ22 − 4Γ1Γ3 + Γ4
(Γ2 − Γ12)2  

where: 

Γ𝑖𝑖 = Γ �1 +
𝑖𝑖
𝛽𝛽� 

Characteristic Function 
�

(𝑖𝑖𝑡𝑡)𝑛𝑛𝛼𝛼𝑛𝑛

𝑛𝑛! Γ �1 +
𝑛𝑛
𝛽𝛽�

∞

𝑛𝑛=0

 

100p% Percentile Function 
𝑡𝑡𝑝𝑝 = 𝛼𝛼[− ln(1 − 𝑝𝑝)]

1
𝛽𝛽 

Parameter Estimation 

Plotting Method 

Least Mean 
Square      
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis 𝛼𝛼� = 𝑒𝑒−
𝑐𝑐
𝑚𝑚 

�̂�𝛽 = 𝑚𝑚 ln (𝑡𝑡𝑖𝑖) ln �𝑠𝑠𝑛𝑛 �
1

1 − 𝐹𝐹�� 

Maximum Likelihood Function 

Likelihood 
Functions L(α,β|E) = �

𝛽𝛽�𝑡𝑡𝑖𝑖𝐹𝐹�
𝛽𝛽−1

𝛼𝛼𝛽𝛽
𝑒𝑒
−�ti

F

𝛼𝛼�
𝛽𝛽

nF

i=1�����������������
failures

.� 𝑒𝑒
−�ti

S

𝛼𝛼�
𝛽𝛽

nS

i=1���������
survivors

 

                       � �𝑒𝑒
−�ti

LI

𝛼𝛼 �
𝛽𝛽

− 𝑒𝑒
−�ti

RI

𝛼𝛼 �
𝛽𝛽

�
nI

i=1�������������������
interval failures

 

Log-Likelihood 
Function Λ(α, β|E) = nF ln(β) − βnF ln(𝛼𝛼) + ��(𝛽𝛽 − 1) ln�𝑡𝑡𝑖𝑖𝐹𝐹�−�

𝑡𝑡𝑖𝑖𝐹𝐹

𝛼𝛼 �
𝛽𝛽

�
nF

i=1�����������������������������������
failures

     

                        −��
tiS

α�
βnS

i=1�������
survivors

+ � ln�e
−�ti

LI

α �
β

− e
−�ti

RI

α �
β

�
nI

i=1�������������������
interval failures
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∂Λ
∂α = 0 

solve for 𝛼𝛼 to get 𝛼𝛼�: 
∂Λ
∂α =

−βnF
α +

β
αβ+1

��tiF�
β

nF

i=1���������������
failures

+
β

αβ+1
��tiS�

β
nS

i=1���������
survivors

 

           +�
β
α

⎝

⎜⎜
⎛�

tiLI
α �

β

e
�ti
RI

α �
β

− �tiRI
α �

β

e
�ti
LI

α �
β

e
�
ti
RI

α �
β

− e
�
ti
LI

α �
β

⎠

⎟⎟
⎞nI

i=1

�������������������������
interval failures

= 0 

∂Λ
∂β = 0 solve for 𝛽𝛽 to get �̂�𝛽: 

 
∂Λ
∂β

=
nF
β + ��ln�

tiF

α� − �
tiF

α�
β

. ln �
tiF

𝛼𝛼��
nF

i=1�����������������������
failures

−��
tiS

α�
β

ln �
tiS

𝛼𝛼�
nS

i=1�����������
survivors

 

      +�

⎝

⎜⎜
⎛ln �tiRI

𝛼𝛼 � .�tiRI
α �

β

. e
�ti
LI

α �
β

− ln �tiLI
𝛼𝛼 � .�tiLI

α �
β

. e
�ti
RI

α �
β

e
�
ti
RI

α �
β

− e
�
ti
LI

α �
β

⎠

⎟⎟
⎞nI

i=1

�������������������������������������
interval failures

= 0 

MLE Point 
Estimates 

When there is only complete failure and/or right censored data the point 
estimates can be solved using (Rinne 2008, p.439): 
 

α� = �
∑�tiF�

β� + ∑�tiS�
β�

nF
�

1
β�

 

β� = �
∑�tiF�

β� ln�tiF� + ∑�tiS�
β� ln�tiS�

∑�tiF�
β� + ∑�tiS�

β�
−

1
𝑛𝑛𝐹𝐹

� ln (tiF)�

−1

 

 
Note: Numerical methods are needed to solve β� then substitute to find 
α�. Numerical methods to find Weibull MLE estimates for complete and 
censored data for 2 parameter and 3 parameter Weibull distribution are 
detailed in (Rinne 2008). 

Fisher 
Information 
Matrix 
 
(Rinne 2008, 
p.412) 

𝐼𝐼(𝛼𝛼,𝛽𝛽) =

⎣
⎢
⎢
⎡ 𝛽𝛽

2

𝛼𝛼2
Γ′(2)
−𝛼𝛼

Γ′(2)
−𝛼𝛼

1 + Γ′′(2)
𝛽𝛽2  ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 𝛽𝛽2

𝛼𝛼2
1 − 𝛾𝛾
𝛼𝛼

1 − 𝛾𝛾
𝛼𝛼

𝜋𝜋2
6 + (1 − 𝛾𝛾2)

𝛽𝛽2
 ⎦
⎥
⎥
⎥
⎤

 

≅

⎣
⎢
⎢
⎡ 𝛽𝛽2

𝛼𝛼2
0.422784

−𝛼𝛼
0.422784

−𝛼𝛼
1.823680

𝛽𝛽2  ⎦
⎥
⎥
⎤
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100𝛾𝛾% 
Confidence 
Interval  
 
(complete 
data) 

The asymptotic variance-covariance matrix of (𝛼𝛼�, �̂�𝛽) is: (Rinne 2008, 
pp.412-417) 

𝐶𝐶𝐶𝐶𝐶𝐶�𝛼𝛼�, �̂�𝛽� = �𝐽𝐽𝑛𝑛�𝛼𝛼�, �̂�𝛽��−1 =
1
𝑛𝑛𝐹𝐹

�
1.1087

𝛼𝛼�2

�̂�𝛽2
0.2570𝛼𝛼�

0.2570𝛼𝛼� 0.6079�̂�𝛽2 
� 

Bayesian 

Bayesian analysis is applied to either one of two re-parameterizations of the Weibull 
Distribution: (Rinne 2008, p.517) 
 

𝑓𝑓(𝑡𝑡; 𝜆𝜆,𝛽𝛽) = 𝜆𝜆𝛽𝛽𝑡𝑡𝛽𝛽−1 exp�−𝜆𝜆𝑡𝑡𝛽𝛽�     where  𝜆𝜆 = 𝛼𝛼−𝛽𝛽 
or 

𝑓𝑓(𝑡𝑡;𝜃𝜃,𝛽𝛽) =
𝛽𝛽
𝜃𝜃 𝑡𝑡

𝛽𝛽−1 exp�−
𝑡𝑡𝛽𝛽

𝜃𝜃 �     where  𝜃𝜃 =
1
𝜆𝜆 = 𝛼𝛼𝛽𝛽 

Non-informative Priors 𝝅𝝅𝟎𝟎(𝝀𝝀) (Rinne 2008, p.517) 

Type Prior Posterior 

Uniform Proper Prior with 
known 𝛽𝛽 and limits 𝜆𝜆 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Gamma Distribution 

For a ≤ λ ≤ b 
𝑐𝑐.𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + nF, tT,β) 

 
Otherwise  𝜋𝜋(𝜆𝜆) = 0 

Jeffrey’s Prior when 𝛽𝛽 is known. 1
𝜆𝜆 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(0,0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; nF, tT,β) 

when 𝜆𝜆 ∈ [0,∞) 

Jeffrey’s Prior for unknown 𝜃𝜃 
and 𝛽𝛽.  

 

1
𝜃𝜃𝛽𝛽 No closed form 

(Rinne 2008, p.527) 

where       𝑡𝑡𝑇𝑇,𝛽𝛽 = ∑�tiF�
β + ∑�tiS�

β = adjusted total time in test 

Conjugate Priors 

It was found by Soland that no joint continuous prior distribution exists for the Weibull 
distribution. Soland did however propose a procedure which used a continuous 
distribution for α and a discrete distribution for β which will not be included here. (Martz & 
Waller 1982) 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝜆𝜆 
where 
𝜆𝜆 = 𝛼𝛼−𝛽𝛽 

from 
𝑊𝑊𝑏𝑏𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

 

Weibull with 
known 𝛽𝛽 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖𝐹𝐹 Gamma 𝑘𝑘0,Λ0  

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 
Λ = Λ0 + 𝑡𝑡𝑇𝑇,𝛽𝛽 
(Rinne 2008, 

p.520) 
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𝜃𝜃 
where 
𝜃𝜃 = 𝛼𝛼𝛽𝛽 
from 

𝑊𝑊𝑏𝑏𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Weibull with 
known 𝛽𝛽 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖𝐹𝐹 

Inverted 
Gamma 𝛼𝛼0, β0  

𝛼𝛼 = 𝛼𝛼𝑜𝑜 + 𝑛𝑛𝐹𝐹 
β = β0 + 𝑡𝑡𝑇𝑇,𝛽𝛽 
(Rinne 2008, 

p.524) 

Description , Limitations and Uses 

Example 5 components are put on a test with the following failure times: 
535, 613, 976, 1031, 1875  hours 

 
β� is found by numerically solving: 

β� = �
∑�tiF�

β� ln�tiF�

∑�tiF�
β�

− 6.8118�

−1

 

 
β� = 2.275 

α� is found by solving: 

α� = �
∑�tiF�

β�

nF
�

1
β�

= 1140 

 
Covariance Matrix is: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝛼𝛼�, �̂�𝛽� =
1
5 �

1.1087
𝛼𝛼�2

�̂�𝛽2
0.2570𝛼𝛼�

0.2570𝛼𝛼� 0.6079�̂�𝛽2 
� = �55679 58.596

58.596 0.6293 � 

 
90% confidence interval for 𝛼𝛼�: 

�𝛼𝛼�. exp �
𝛷𝛷−1(0.95)√55679

−𝛼𝛼� � , 𝛼𝛼�. exp �
𝛷𝛷−1(0.95)√55679

𝛼𝛼� ��  

[811, 1602]  
 
 
 
90% confidence interval for 𝛽𝛽: 

��̂�𝛽. exp �
𝛷𝛷−1(0.95)√0.6293

−�̂�𝛽
� , �̂�𝛽. exp �

𝛷𝛷−1(0.95)√0.6293
�̂�𝛽

��  

[1.282, 4.037]  
 
Note that with only 5 samples the assumption that the parameter 
distribution is approximately normal is probably inaccurate and 
therefore the confidence intervals need to be used with caution.  
 

Characteristics  The Weibull distribution is also known as a “Type III asymptotic 
distribution for minimum values”. 
 
β  Characteristics: 

β < 1. The hazard rate decreases with time. 
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β = 1. The hazard rate is constant (exp distribution) 
β > 1. The hazard rate increases with time. 
1 < β < 2. The hazard rate increases less as time increases. 
β = 2. The hazard rate increases with a linear relationship 
to time. 
β > 2. The hazard rate increases more as time increases.   
β < 3.447798. The distribution is positively skewed. (Tail to 
right). 
β ≈ 3.447798. The distribution is approximately 
symmetrical. 
β > 3.447798. The distribution is negatively skewed (Tail to 
left). 
3 < β < 4. The distribution approximates a normal 
distribution. 
β > 10. The distribution approximates a Smallest Extreme 
Value Distribution. 

 
Note that for 𝛽𝛽 =  0.999, 𝑓𝑓(0)  =  ∞, but for 𝛽𝛽 =  1.001, 𝑓𝑓(0)  =  0. 
This rapid change creates complications when maximizing likelihood 
functions. (Weibull.com) As 𝛽𝛽 →  ∞, the 𝑚𝑚𝐶𝐶𝑑𝑑𝑒𝑒 →  𝛼𝛼. 
 
α  Characteristics. Increasing 𝛼𝛼 stretches the distribution over the 
time scale. With the 𝑓𝑓(0) point fixed this also has the effect of 
increasing the mode, mean and median. The value for 𝛼𝛼 is at the 
63% Percentile.  𝐹𝐹(𝛼𝛼) = 0.632.. 
 

𝑋𝑋~𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝛼𝛼,𝛽𝛽) 
 
Scaling property: (Leemis & McQueston 2008) 
 

𝑘𝑘𝑋𝑋~𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠�𝛼𝛼𝑘𝑘𝛽𝛽 ,𝛽𝛽� 
 
Minimum property (Rinne 2008, p.107) 

min {𝑋𝑋,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}~𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛−
1
𝛽𝛽 ,𝛽𝛽) 

When 𝛽𝛽 is fixed. 
 
Variate Generation property 

𝐹𝐹−1(𝑢𝑢) = 𝛼𝛼[− ln(1 − 𝑢𝑢)]
1
𝛽𝛽 ,    0 < 𝑢𝑢 < 1 

 
Lognormal versus Weibull. In analyzing life data to these 
distributions it is often the case that both may be a good fit, especially 
in the middle of the distribution. The Weibull distribution has an 
earlier lower tail and produces a more pessimistic estimate of the 
component life. (Nelson 1990, p.65) 
 

Applications The Weibull distribution is by far the most popular life distribution 
used in reliability engineering. This is due to its variety of shapes and 
generalization or approximation of many other distributions. Analysis 
assuming a Weibull distribution already includes the exponential life 
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distribution as a special case.  
 
There are many physical interpretations of the Weibull Distribution. 
Due to its minimum property a physical interpretation is the weakest 
link, where a system such as a chain will fail when the weakest link 
fails. It can also be shown that the Weibull Distribution can be derived 
from a cumulative wear model (Rinne 2008, p.15)  
 
The following is a non-exhaustive list of applications where the 
Weibull distribution has been used in: 

• Acceptance sampling 
• Warranty analysis 
• Maintenance and renewal 
• Strength of material modeling 
• Wear modeling 
• Electronic failure modeling 
• Corrosion modeling 

 
A detailed list with references to practical examples is contained in 
(Rinne 2008, p.275) 
 

Resources Online: 
http://www.weibull.com/LifeDataWeb/the_weibull_distribution.htm  
http://mathworld.wolfram.com/WeibullDistribution.html 
http://en.wikipedia.org/wiki/Weibull_distribution   
http://socr.ucla.edu/htmls/SOCR_Distributions.html (interactive web 
calculator) 
http://www.qualitydigest.com/jan99/html/weibull.html (how to use 
conduct Weibull analysis in Excel, William W. Dorner) 
 
Books: 
Rinne, H., 2008. The Weibull Distribution: A Handbook 1st ed., 
Chapman & Hall/CRC.   
 
Murthy, D.N.P., Xie, M. & Jiang, R., 2003. Weibull Models 1st ed., 
Wiley-Interscience.   
 
Nelson, W.B., 1982. Applied Life Data Analysis, Wiley-Interscience.   
 

Relationship to Other Distributions 

Three Parameter 
Weibull 
Distribution 
 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽, 𝛾𝛾) 

The three parameter model adds a locator parameter to the two 
parameter Weibull distribution allowing a shift along the x-axis. This 
creates a period of guaranteed zero failures to the beginning of the 
product life and is therefore only used in special cases.  
 
Special Case: 

𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽, 𝛾𝛾 = 0) 

Exponential Let  

http://www.weibull.com/LifeDataWeb/the_weibull_distribution.htm
http://mathworld.wolfram.com/WeibullDistribution.html
http://en.wikipedia.org/wiki/Weibull_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
http://www.qualitydigest.com/jan99/html/weibull.html
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Distribution 
 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

𝑋𝑋~𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝛼𝛼,𝛽𝛽)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = Xβ 
Then 

𝑌𝑌~𝐸𝐸𝑥𝑥𝑝𝑝(λ = 𝛼𝛼−𝛽𝛽) 
Special Case: 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠 �𝑡𝑡;𝛼𝛼 =
1
𝜆𝜆 ,𝛽𝛽 = 1� 

Rayleigh 
Distribution 
 
𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝑡𝑡;𝛼𝛼) 

Special Case: 
𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝑡𝑡;𝛼𝛼) = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽 = 2) 

χ Distribution 
 

𝜒𝜒(𝑡𝑡|𝐶𝐶) 

Special Case: 
𝜒𝜒(𝑡𝑡|𝐶𝐶 = 2) = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠�𝑡𝑡|𝛼𝛼 = √2,𝛽𝛽 = 2� 
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3. Bathtub Life Distributions 
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3.1. 2-Fold Mixed Weibull 
Distribution 

All shapes shown are variations from 𝑝𝑝 = 0.5   𝛼𝛼1 = 2  𝛽𝛽1 = 0.5  𝛼𝛼2 = 10   𝛽𝛽2 = 20 
Probability Density Function - f(t)  

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 

  

0 5 10

α2=10 β2=20
α2=10 β2=10
α2=10 β2=1
α2=5 β2=10

0 5 10

α1=2 β1=0.1
α1=2 β1=0.5
α1=2 β1=1
α1=2 β1=5

0 5 10

p=0
p=0.3
p=0.7
p=1

0 5 10 0 5 10 0 10

0 5 10 0 10 0 10
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Parameters & Description 

Parameters 

𝛼𝛼𝑖𝑖 𝛼𝛼𝑖𝑖 > 0 Scale Parameter: This is the scale for 
each Weibull Distribution.  

𝛽𝛽𝑖𝑖 𝛽𝛽𝑖𝑖 > 0 Shape Parameters: The shape of 
each Weibull Distribution 

𝑝𝑝 0 ≤ 𝑝𝑝 ≤ 1 
Mixing Parameter. This determines 
the weight each Weibull Distribution 
has on the overall density function.  

Limits 𝑡𝑡 ≥  0 

Distribution Formulas 

PDF 

𝑓𝑓(𝑡𝑡) = 𝑝𝑝𝑓𝑓1(𝑡𝑡) + (1 − 𝑝𝑝)𝑓𝑓2(𝑡𝑡) 
 

where 𝑓𝑓𝑖𝑖(𝑡𝑡) =
𝛽𝛽𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖−1

𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖
𝑒𝑒−�

𝑡𝑡
𝛼𝛼𝑖𝑖
�
𝛽𝛽𝑖𝑖

   and  𝑖𝑖 ∈ {1,2} 

CDF 
𝐹𝐹(𝑡𝑡) = 𝑝𝑝𝐹𝐹1(𝑡𝑡) + (1 − 𝑝𝑝)𝐹𝐹2(𝑡𝑡) 

where 𝐹𝐹𝑖𝑖(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑡𝑡
𝛼𝛼𝑖𝑖
�
𝛽𝛽𝑖𝑖

          and  𝑖𝑖 ∈ {1,2} 
 

Reliability 
𝑅𝑅(𝑡𝑡) = 𝑝𝑝𝑅𝑅1(𝑡𝑡) + (1 − 𝑝𝑝)𝑅𝑅2(𝑡𝑡) 

where 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑒𝑒−�
𝑡𝑡
𝛼𝛼𝑖𝑖
�
𝛽𝛽𝑖𝑖

               and  𝑖𝑖 ∈ {1,2} 
 

Hazard Rate 

ℎ(𝑡𝑡) = 𝑤𝑤1(𝑡𝑡)ℎ1(𝑡𝑡) + 𝑤𝑤2(𝑡𝑡)ℎ2(𝑡𝑡) 
 

where         𝑤𝑤𝑖𝑖(𝑡𝑡) =
𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝑡𝑡)

∑ 𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1

               and  𝑖𝑖 ∈ {1,2} 

 

Properties and Moments 

Median Solved numerically 

Mode Solved numerically 

Mean - 1st Raw Moment  

𝑝𝑝𝛼𝛼1Γ �1 +
1
𝛽𝛽1
� + (1 − p)𝛼𝛼2Γ �1 +

1
𝛽𝛽2
� 

 

Variance - 2nd Central Moment  
𝑝𝑝.𝑉𝑉𝑉𝑉𝑟𝑟[𝑇𝑇1] + (1 − 𝑝𝑝)𝑉𝑉𝑉𝑉𝑟𝑟[𝑇𝑇2]  
         +𝑝𝑝(𝐸𝐸[𝑋𝑋1] − 𝐸𝐸[𝑋𝑋])2  
         +(1 − 𝑝𝑝)(𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋])2  
 
 
𝑝𝑝.𝛼𝛼2 �Γ �1 + 2

𝛽𝛽1
� − Γ2 �1 + 1

𝛽𝛽1
��  
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         +(1− 𝑝𝑝)𝛼𝛼2 �Γ �1 + 2
𝛽𝛽2
� − Γ2 �1 + 1

𝛽𝛽2
��  

         +𝑝𝑝 �𝛼𝛼1Γ �1 + 1
𝛽𝛽1
� − 𝐸𝐸[𝑋𝑋]�

2

  

         +(1− 𝑝𝑝) �𝛼𝛼2Γ �1 + 1
𝛽𝛽2
� − 𝐸𝐸[𝑋𝑋]�

2

  

 

100p% Percentile Function Solved numerically 

Parameter Estimation 

Plotting Method  (Jiang & Murthy 1995) 

Plot Points on 
a Weibull 
Probability Plot 

X-Axis Y-Axis 

𝑥𝑥 = 𝑠𝑠𝑛𝑛 (𝑡𝑡) 𝑦𝑦 = 𝑠𝑠𝑛𝑛 �𝑠𝑠𝑛𝑛 �
1

1 − 𝐹𝐹�� 

Using the Weibull Probability Plot the parameters can be estimated. Jiang & Murthy, 1995, 
provide a comprehensive coverage of this procedure and detail error in previous methods. 
A typical WPP for a 2-fold Mixed Weibull Distribution is: 

 
WPP for 2-Fold Weibull Mixture Model 𝑝𝑝 = 1

2,𝛼𝛼1 = 5,𝛽𝛽1 = 0.5,𝛼𝛼2 = 10,𝛽𝛽2 = 5 
 
Sub Populations: 
The dotted lines in the WPP is the lines representing the subpopulations: 

𝐿𝐿1 = 𝛽𝛽1[𝑥𝑥 − ln(𝛼𝛼1)] 
 

𝐿𝐿2 = 𝛽𝛽2[𝑥𝑥 − ln(𝛼𝛼2)] 
 

-1 0 1 2 3 4 5 6
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Asymptotes  (Jiang & Murthy 1995): 
As 𝑥𝑥 → −∞ (𝑡𝑡 → 0) there exists an asymptote approximated by: 

𝑦𝑦 ≈ 𝛽𝛽1[𝑥𝑥 − ln(𝛼𝛼1)] + ln (𝑐𝑐) 
where 

𝑐𝑐 = �
𝑝𝑝                                 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝛽𝛽1 ≠ 𝛽𝛽2

𝑝𝑝 + (1 − 𝑝𝑝). �
𝛼𝛼1
𝛼𝛼2
�
𝛽𝛽1

𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝛽𝛽1 = 𝛽𝛽2
 

 
As 𝑥𝑥 → ∞ (𝑡𝑡 → ∞) the asymptote straight line can be approximated by: 

𝑦𝑦 ≈ 𝛽𝛽1[𝑥𝑥 − ln(𝛼𝛼1)] 
 
 
Parameter Estimation 
Jiang and Murthy divide the parameter estimation procedure into three cases: 
 
 
Well Mixed Case 𝜷𝜷𝝈𝝈 ≠ 𝜷𝜷𝟏𝟏  𝑾𝑾𝒏𝒏𝑾𝑾 𝜶𝜶𝟏𝟏 ≈ 𝜶𝜶𝝈𝝈  
- Estimate the parameters of 𝛼𝛼1 and 𝛽𝛽1 from the 𝐿𝐿1 line (right asymptote). 
- Estimate the parameter 𝑝𝑝 from the separation distance between the left and right 
asymptotes. 
- Find the point where the curve crosses 𝐿𝐿1 (point I). The slope at point I is: 

�̅�𝛽 = 𝑝𝑝𝛽𝛽1 + (1 − 𝑝𝑝)𝛽𝛽2 
- Determine slope at point I and use to estimate 𝛽𝛽2  
- Draw a line through the intersection point I with slope 𝛽𝛽2 and  use the intersection point 
to estimate 𝛼𝛼2. 
 
 
Well Separated Case 𝜷𝜷𝝈𝝈 ≠ 𝜷𝜷𝟏𝟏  𝑾𝑾𝒏𝒏𝑾𝑾 𝜶𝜶𝟏𝟏 ≫ 𝜶𝜶𝝈𝝈 𝑯𝑯𝑯𝑯 𝜶𝜶𝟏𝟏 ≪ 𝜶𝜶𝝈𝝈   
- Determine visually if data is scattered along the bottom (or top) to determine if 𝛼𝛼1 ≪ 𝛼𝛼2 
(or 𝛼𝛼1 ≫ 𝛼𝛼2). 
- If 𝛼𝛼1 ≪ 𝛼𝛼2 (𝛼𝛼1 ≫ 𝛼𝛼2) locate the inflection, 𝑦𝑦𝑎𝑎, to the left (right) of the point I. This point 
𝑦𝑦𝑎𝑎 ≅ ln [− ln(1 − 𝑝𝑝)]   { or 𝑦𝑦𝑎𝑎 ≅ ln [− ln(𝑝𝑝)] }. Using this formula estimate p. 
- Estimate 𝛼𝛼1 and 𝛼𝛼2: 

• If 𝛼𝛼1 ≪ 𝛼𝛼2 calculate point 𝑦𝑦1 = ln �𝑠𝑠𝑛𝑛 �1 − 𝑝𝑝 + 𝑝𝑝
𝑒𝑒𝑖𝑖𝑝𝑝(1)��  and 𝑦𝑦2 = ln �𝑠𝑠𝑛𝑛 � 1−𝑝𝑝

𝑒𝑒𝑖𝑖𝑝𝑝(1)��. 
Find the coordinates where 𝑦𝑦1 and 𝑦𝑦2 intersect the WPP curve. At these points 
estimate 𝛼𝛼1 = 𝑒𝑒𝑖𝑖1  and  𝛼𝛼2 = 𝑒𝑒𝑖𝑖2. 

• If 𝛼𝛼1 ≫ 𝛼𝛼2 calculate point 𝑦𝑦1 = ln �− 𝑠𝑠𝑛𝑛 � 𝑝𝑝
𝑒𝑒𝑖𝑖𝑝𝑝(1)��  and 𝑦𝑦2 = ln �−𝑠𝑠𝑛𝑛 �𝑝𝑝 + 1−𝑝𝑝

𝑒𝑒𝑖𝑖𝑝𝑝(1)��. 
Find the coordinates where 𝑦𝑦1 and 𝑦𝑦2 intersect the WPP curve. At these points 
estimate 𝛼𝛼1 = 𝑒𝑒𝑖𝑖1  and  𝛼𝛼2 = 𝑒𝑒𝑖𝑖2. 

- Estimate 𝛽𝛽1: 
• If 𝛼𝛼1 ≪ 𝛼𝛼2 draw and approximate 𝐿𝐿2 ensuring it intersects 𝛼𝛼2. Estimate 𝛽𝛽2 from 

the slope of 𝐿𝐿2. 
• If 𝛼𝛼1 ≫ 𝛼𝛼2 draw and approximate 𝐿𝐿1 ensuring it intersects 𝛼𝛼1. Estimate 𝛽𝛽1 from 

the slope of 𝐿𝐿1. 
- Find the point where the curve crosses 𝐿𝐿1 (point I). The slope at point I is: 

�̅�𝛽 = 𝑝𝑝𝛽𝛽1 + (1 − 𝑝𝑝)𝛽𝛽2 
- Determine slope at point I and use to estimate 𝛽𝛽2  
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Common Shape Parameter 𝜷𝜷𝝈𝝈 = 𝜷𝜷𝟏𝟏    

If �𝛼𝛼2
𝛼𝛼1
�
𝛽𝛽1
≈1 then: 

- Estimate the parameters of 𝛼𝛼1 and 𝛽𝛽1 from the 𝐿𝐿1 line (right asymptote). 
- Estimate the parameter 𝑝𝑝 from the separation distance between the left and right 
asymptotes. 
- Draw a vertical line through 𝑥𝑥 = ln (𝛼𝛼1). The intersection with the WPP can yield an 
estimate of 𝛼𝛼2 using: 

𝑦𝑦1 = �
𝑝𝑝

exp(1) +
1 − 𝑝𝑝

exp ��𝛼𝛼2𝛼𝛼1
�
𝛽𝛽1
�
 � 

 

If �𝛼𝛼2
𝛼𝛼1
�
𝛽𝛽1
≪1 then: 

- Find inflection point and estimate the y coordinate 𝑦𝑦𝑟𝑟. Estimate p using: 
𝑦𝑦𝑇𝑇 ≅ ln [− ln(𝑝𝑝)] 

- If 𝛼𝛼1 ≪ 𝛼𝛼2 calculate point 𝑦𝑦1 = ln �𝑠𝑠𝑛𝑛 �1 − 𝑝𝑝 + 𝑝𝑝
𝑒𝑒𝑖𝑖𝑝𝑝(1)��  and 𝑦𝑦2 = ln �𝑠𝑠𝑛𝑛 � 1−𝑝𝑝

𝑒𝑒𝑖𝑖𝑝𝑝(1)��. Find the 
coordinates where 𝑦𝑦1 and 𝑦𝑦2 intersect the WPP curve. At these points estimate 𝛼𝛼1 = 𝑒𝑒𝑖𝑖1  
and  𝛼𝛼2 = 𝑒𝑒𝑖𝑖2. 
- Using the left or right asymptote estimate 𝛽𝛽1 = 𝛽𝛽2 from the slope. 

Maximum 
Likelihood 
 
Bayesian 

MLE and Bayesian techniques can be used using numerical 
methods however estimates obtained from the graphical methods 
are useful for initial guesses.  A literature review of MLE and 
Bayesian methods is covered in (Murthy et al. 2003). 
 

Description , Limitations and Uses 

Characteristics  Hazard Rate Shape. The hazard rate can be approximated at its 
limits by  (Jiang & Murthy 1995):  
 

𝑆𝑆𝑚𝑚𝑉𝑉𝑠𝑠𝑠𝑠 𝑡𝑡:  ℎ(𝑡𝑡) ≈ 𝑐𝑐ℎ1(𝑡𝑡)      𝐿𝐿𝑉𝑉𝑟𝑟𝑅𝑅𝑒𝑒 𝑡𝑡:ℎ(𝑡𝑡) ≈ ℎ1 
 
This result proves that the hazard rate (increasing or decreasing) of 
ℎ1 will dominate the limits of the mixed Weibull distribution. Therefore 
the hazard rate cannot be a bathtub curve shape. Instead the 
possible shapes of the hazard rate is: 

• Decreasing 
• Unimodal 
• Decreasing followed by unimodal (rollercoaster) 
• Bi-modal 

 
The reason this distribution has been included as a bathtub 
distribution is because on many occasions the hazard rate of a 
complex product may follow the “rollercoaster” shape instead which 
is given as decreasing followed by unimodal shape.  
 
The shape of the hazard rate is only determined by the two shape 
parameters 𝛽𝛽1 and 𝛽𝛽2. A complete study on the characterization of 
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the 2-Fold Mixed Weibull Distribution is contained in Jiang and 
Murthy 1998. 
 
p Values 
The mixture ratio, 𝑝𝑝𝑖𝑖, for each Weibull Distribution may be used to 
estimate the percentage of each subpopulation. However this is not 
a reliable measure and it known to be misleading (Berger & Sellke 
1987) 
 
N-Fold Distribution (Murthy et al. 2003) 
A generalization to the 2-fold mixed Weibull distribution is the n-fold 
case. This distribution is defined as: 

𝑓𝑓(𝑡𝑡) = �𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

where 𝑓𝑓𝑖𝑖(𝑡𝑡) =
𝛽𝛽𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖−1

𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖
𝑒𝑒−�

𝑡𝑡
𝛼𝛼𝑖𝑖
�
𝛽𝛽𝑖𝑖

𝑉𝑉𝑛𝑛𝑑𝑑   �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1    

and the hazard rate is given as: 

ℎ(𝑡𝑡) = �𝑤𝑤𝑖𝑖(𝑡𝑡)ℎ𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒         𝑤𝑤𝑖𝑖(𝑡𝑡) =
𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝑡𝑡)

∑ 𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1

 

 
It has been found that in many instances a higher number of folds 
will not significantly increase the accuracy of the model but does 
impose a significant overhead in the number of parameters to 
estimate. The 3-Fold Weibull Mixture Distribution has been studied 
by Jiang and Murthy 1996. 
 
2-Fold Weibull 3-Parameter Distribution 
A common variation to the model presented here is to have the 
second Weibull distribution modeled with three parameters. 
 

Resources Books / Journals: 
Jiang, R. & Murthy, D., 1995. Modeling Failure-Data by Mixture of 
2 Weibull Distributions : A Graphical Approach. IEEE Transactions 
on Reliability, 44, 477-488.   
 
Murthy, D., Xie, M. & Jiang, R., 2003. Weibull Models 1st ed., 
Wiley-Interscience.   
 
Rinne, H., 2008. The Weibull Distribution: A Handbook 1st ed., 
Chapman & Hall/CRC.   
 
Jiang, R. & Murthy, D., 1996. A mixture model involving three 
Weibull distributions. In Proceedings of the Second Australia–
Japan Workshop on Stochastic Models in Engineering, Technology 
and Management. Gold Coast, Australia, pp. 260-270. 
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Jiang, R. & Murthy, D., 1998. Mixture of Weibull distributions - 
parametric characterization of failure rate function. Applied 
Stochastic Models and Data Analysis, (14), 47-65.   
 
Balakrishnan, N. & Rao, C.R., 2001. Handbook of Statistics 20: 
Advances in Reliability 1st ed., Elsevier Science & Technology.   
 

Relationship to Other Distributions 

Weibull 
Distribution 
 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Special Case: 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) = 2𝐹𝐹𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼 = 𝛼𝛼1,𝛽𝛽 =  𝛽𝛽1, 𝑝𝑝 = 1) 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) = 2𝐹𝐹𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼 = 𝛼𝛼2,𝛽𝛽 =  𝛽𝛽2, 𝑝𝑝 = 0) 
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3.2. Exponentiated Weibull 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 
𝛼𝛼 𝛼𝛼 > 0 Scale Parameter. 

𝛽𝛽 𝛽𝛽 > 0 Shape Parameter. 

𝐶𝐶 𝐶𝐶 > 0 Shape Parameter. 

Limits 𝑡𝑡 ≥  0 

Distribution Formulas 

PDF 

 

𝑓𝑓(𝑡𝑡) =
𝛽𝛽𝐶𝐶𝑡𝑡𝛽𝛽−1

𝛼𝛼𝛽𝛽
�1 − exp �−�

𝑡𝑡
𝛼𝛼�

𝛽𝛽
��
𝑣𝑣−1

exp �− �
𝑡𝑡
𝛼𝛼�

𝛽𝛽
� 

  
= 𝐶𝐶{𝐹𝐹𝑊𝑊(𝑡𝑡)}𝑣𝑣−1𝑓𝑓𝑊𝑊(𝑡𝑡) 

 
Where 𝐹𝐹𝑊𝑊(𝑡𝑡) and 𝑓𝑓𝑊𝑊(𝑡𝑡) are the cdf and pdf of the two parameter 
Weibull distribution respectively.  

CDF 

 

𝐹𝐹(𝑡𝑡) = �1 − exp �−�
t
α�

β
��
v

 

= [𝐹𝐹𝑊𝑊(𝑡𝑡)]𝑣𝑣 
 

Reliability 

 

R(t) = 1 − �1 − exp �− �
t
α�

β
��
v

 

= 1 − [𝐹𝐹𝑊𝑊(𝑡𝑡)]𝑣𝑣 
 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + x)
𝑅𝑅(𝑡𝑡) =

1 − �1 − exp �− �𝑡𝑡 + 𝑥𝑥
𝛼𝛼 �

𝛽𝛽
��
𝑣𝑣

1 − �1 − exp �− �𝑡𝑡𝛼𝛼�
𝛽𝛽
��
𝑣𝑣  

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

 

𝑢𝑢(𝑡𝑡) =
∫ �1 − �1 − exp �− �𝑡𝑡𝛼𝛼�

𝛽𝛽
��
𝑣𝑣

�  𝑑𝑑𝑥𝑥∞
t

1 − �1 − exp �− �𝑡𝑡𝛼𝛼�
𝛽𝛽
��
𝑣𝑣  

 

Hazard Rate ℎ(𝑡𝑡) =
𝛽𝛽𝐶𝐶�𝑡𝑡 𝛼𝛼� �

𝛽𝛽−1
�1 − exp �−�𝑡𝑡 𝛼𝛼� �

𝛽𝛽
��
𝑣𝑣−1

exp �−�𝑡𝑡 𝛼𝛼� �
𝛽𝛽
�

1 − �1 − exp �−�𝑡𝑡 𝛼𝛼� �
𝛽𝛽
��
𝑣𝑣  
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For small t: (Murthy et al. 2003, p.130) 

ℎ(𝑡𝑡) ≈ �
𝛽𝛽𝐶𝐶
𝛼𝛼 � �

𝑡𝑡
𝛼𝛼�

𝛽𝛽𝑣𝑣−1
 

For large t: (Murthy et al. 2003, p.130) 

ℎ(𝑡𝑡) ≈ �
𝛽𝛽
𝛼𝛼� �

𝑡𝑡
𝛼𝛼�

𝛽𝛽−1
 

Properties and Moments 

Median 
𝛼𝛼 �− ln �1 − 2−1 𝑣𝑣� ��

1
𝛽𝛽�  

Mode For 𝛽𝛽𝐶𝐶 > 1 the mode can be approximated 
(Murthy et al. 2003, p.130): 

𝛼𝛼 �
1
2 �
�𝛽𝛽(𝛽𝛽 − 8𝐶𝐶 + 2𝛽𝛽𝐶𝐶 + 9𝛽𝛽𝐶𝐶2)

𝛽𝛽𝐶𝐶 − 1 −
1
𝐶𝐶��

𝑣𝑣

 

Mean - 1st Raw Moment Solved numerically see Murthy et al. 2003, 
p.128 Variance - 2nd Central Moment 

100𝑝𝑝% Percentile Function 
𝑡𝑡𝑝𝑝 = 𝛼𝛼 �− ln �1 − 𝑝𝑝1 𝑣𝑣� ��

1
𝛽𝛽�  

Parameter Estimation 

Plotting Method  (Jiang & Murthy 1999) 

Plot Points on 
a Weibull 
Probability Plot 

X-Axis Y-Axis 

𝑥𝑥 = 𝑠𝑠𝑛𝑛 (𝑡𝑡) 𝑦𝑦 = 𝑠𝑠𝑛𝑛 �𝑠𝑠𝑛𝑛 �
1

1 − 𝐹𝐹�� 

Using the Weibull Probability Plot the parameters can be estimated. (Jiang & Murthy 
1999), provide a comprehensive coverage of this. A typical WPP for an exponentiated 
Weibull distribution is: 

 
WPP for exponentiated Weibull distribution 𝛼𝛼 = 5, 𝛽𝛽 = 2, 𝐶𝐶 = 0.4 

 
Asymptotes   (Jiang & Murthy 1999): 
As 𝑥𝑥 → −∞ (𝑡𝑡 → 0) there exists an asymptote approximated by: 
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𝑦𝑦 ≈ 𝛽𝛽𝐶𝐶[𝑥𝑥 − ln(𝛼𝛼)] 
 
As 𝑥𝑥 → ∞ (𝑡𝑡 → ∞) the asymptote straight line can be approximated by: 

𝑦𝑦 ≈ 𝛽𝛽[𝑥𝑥 − ln(𝛼𝛼)] 
 
Both asymptotes intersect the x-axis at 𝑠𝑠𝑛𝑛 (𝛼𝛼) however both have different slopes unless 
𝐶𝐶 = 1 and the WPP is the same as a two parameter Weibull distribution. 
 
Parameter Estimation 
Plot estimates of the asymptotes ensuring they cross the x-axis at the same point. Use 
the right asymptote to estimate 𝛼𝛼 and 𝛽𝛽. Use the left asymptote to estimate 𝐶𝐶. 
 

Maximum 
Likelihood 
 
Bayesian 

MLE and Bayesian techniques can be used in the standard way 
however estimates obtained from the graphical methods are useful 
for initial guesses when using numerical methods to solve equations.  
A literature review of MLE and Bayesian methods is covered in 
(Murthy et al. 2003). 
 

Description , Limitations and Uses 

Characteristics  PDF Shape: (Murthy et al. 2003, p.129)  
𝜷𝜷𝒗𝒗 <= 1. The pdf is monotonically decreasing, 𝑓𝑓(0) = ∞. 
𝜷𝜷𝒗𝒗 = 𝟏𝟏. The pdf is monotonically decreasing, 𝑓𝑓(0) = 1/𝛼𝛼. 
𝜷𝜷𝒗𝒗 > 1. The pdf is unimodal. 𝑓𝑓(0) = 0. 
 
The pdf shape is determined by 𝛽𝛽𝐶𝐶 in a similar way to the 

𝛽𝛽 for a two parameter Weibull distribution. 
 

Hazard Rate Shape: (Murthy et al. 2003, p.129)  
𝜷𝜷 ≤ 𝟏𝟏 and 𝜷𝜷𝒗𝒗 ≤ 𝟏𝟏. The hazard rate is monotonically 

decreasing.   
𝜷𝜷 ≥ 𝟏𝟏 and 𝜷𝜷𝒗𝒗 ≥ 𝟏𝟏. The hazard rate is monotonically 

increasing.   
𝜷𝜷 < 1 and 𝜷𝜷𝒗𝒗 > 1. The hazard rate is unimodal.   
𝜷𝜷 > 1 and 𝜷𝜷𝒗𝒗 < 1. The hazard rate is a bathtub curve.  

 
Weibull Distribution. The Weibull distribution is a special case of 
the expatiated distribution when 𝐶𝐶 = 1. When 𝐶𝐶 is an integer greater 
than 1, then the cdf represents a multiplicative Weibull model.  
 
Standard Exponentiated Weibull. (Xie et al. 2004) When 𝛼𝛼 = 1 the 
distribution is the standard exponentiated Weibull distribution with 
cdf: 

𝐹𝐹(𝑡𝑡) = �1 − exp�−𝑡𝑡𝛽𝛽��𝑣𝑣 
 
Minimum Failure Rate. (Xie et al. 2004) When the hazard rate is a 
bathtub curve (𝛽𝛽 > 1 and 𝛽𝛽𝐶𝐶 < 1) then the minimum failure rate point 
is: 

𝑡𝑡′ = 𝛼𝛼[− ln(1 − 𝑦𝑦1)]
1
𝛽𝛽�  
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where 𝑦𝑦1 is the solution to: 

(𝛽𝛽 − 1)𝑦𝑦(1 − 𝑦𝑦𝑣𝑣) + 𝛽𝛽 ln(1 − 𝑦𝑦) [1 + 𝐶𝐶𝑦𝑦 − 𝐶𝐶 − 𝑦𝑦𝑣𝑣] = 0 
 
Maximum Mean Residual Life. (Xie et al. 2004) By solving the 
derivative of the MRL function to zero, the maximum MRL is found 
by solving to t: 

𝑡𝑡∗ = 𝛼𝛼[− ln(1 − 𝑦𝑦2)]
1
𝛽𝛽�  

 
where 𝑦𝑦2 is the solution to: 

𝛽𝛽𝐶𝐶(1 − 𝑦𝑦)𝑦𝑦𝑣𝑣−1[− ln(1 − 𝑦𝑦)]−
1
𝛽𝛽�  

× � [1 − �1 − 𝑒𝑒−𝑖𝑖𝛽𝛽�
𝑣𝑣

 𝑑𝑑𝑥𝑥
∞

[− ln(1−𝑦𝑦)]
1
𝛽𝛽�

− (1 − 𝑦𝑦𝑣𝑣)2 = 0 

 
 

Resources Books / Journals: 
Mudholkar, G. & Srivastava, D., 1993. Exponentiated Weibull family 
for analyzing bathtub failure-rate data. Reliability, IEEE 
Transactions on, 42(2), 299-302.   
 
Jiang, R. & Murthy, D., 1999. The exponentiated Weibull family: a 
graphical approach. Reliability, IEEE Transactions on, 48(1), 68-
72.   
 
Xie, M., Goh, T.N. & Tang, Y., 2004. On changing points of mean 
residual life and failure rate function for some generalized Weibull 
distributions. Reliability Engineering and System Safety, 84(3), 
293–299.   
 
Murthy, D., Xie, M. & Jiang, R., 2003. Weibull Models 1st ed., 
Wiley-Interscience.   
 
Rinne, H., 2008. The Weibull Distribution: A Handbook 1st ed., 
Chapman & Hall/CRC.   
 
Balakrishnan, N. & Rao, C.R., 2001. Handbook of Statistics 20: 
Advances in Reliability 1st ed., Elsevier Science & Technology.   

Relationship to Other Distributions 

Weibull 
Distribution 
 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Special Case: 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) = 𝐸𝐸𝑥𝑥𝑝𝑝𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼 = 𝛼𝛼,𝛽𝛽 =  𝛽𝛽, 𝐶𝐶 = 1) 
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3.3. Modified Weibull Distribution 
 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 

   
Note: The hazard rate plots are on a different scale to the PDF and CDF 
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Parameters & Description 

Parameters 

𝑉𝑉 𝑉𝑉 > 0 Scale Parameter. 

𝑏𝑏 𝑏𝑏 ≥ 0 

Shape Parameter: The shape of the 
distribution is completely determined 
by b. When 0 < 𝑏𝑏 < 1 the distribution 
has a bathtub shaped hazard rate.  

𝜆𝜆 𝜆𝜆 ≥ 0 Scale Parameter. 

Limits 𝑡𝑡 ≥  0 

Distribution Formulas 

PDF 𝑓𝑓(𝑡𝑡) = a(b + λt) tb−1 exp(λt) exp�−atb exp(λt)� 

CDF 𝐹𝐹(𝑡𝑡) = 1 − exp[−𝑉𝑉𝑡𝑡𝑏𝑏 𝑒𝑒𝑥𝑥𝑝𝑝(𝜆𝜆𝑡𝑡)] 

Reliability R(t) = exp[−𝑉𝑉𝑡𝑡𝑏𝑏 𝑒𝑒𝑥𝑥𝑝𝑝(𝜆𝜆𝑡𝑡)] 

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) = exp�𝑉𝑉𝑡𝑡𝑏𝑏𝑒𝑒𝜆𝜆𝑡𝑡�� exp�𝑉𝑉𝑥𝑥𝑏𝑏𝑒𝑒𝜆𝜆𝑡𝑡� 𝑑𝑑𝑥𝑥

∞

𝑡𝑡
 

Hazard Rate ℎ(𝑡𝑡) = a(b + λt)tb−1eλt 

Properties and Moments 

Median Solved numerically (see 100p%) 

Mode Solved numerically 

Mean - 1st Raw Moment Solved numerically 

Variance - 2nd Central Moment Solved numerically 

100p% Percentile Function Solve for 𝑡𝑡𝑝𝑝 numerically: 

𝑡𝑡𝑝𝑝bexp (λtp) = −
ln(1 − 𝑝𝑝)

a  
 

Parameter Estimation 

Plotting Method (Lai et al. 2003) 

Plot Points on 
a Weibull 
Probability Plot 

X-Axis Y-Axis 

ln (𝑡𝑡𝑖𝑖) 𝑠𝑠𝑛𝑛 �𝑠𝑠𝑛𝑛 �
1

1 − 𝐹𝐹�� 

Using the Weibull Probability Plot the parameters can be estimated. (Lai et al. 2003).  
 
 
Asymptotes   (Lai et al. 2003): 
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As 𝑥𝑥 → −∞ (𝑡𝑡 → 0) the asymptote straight line can be approximated as: 
𝑦𝑦 ≈ 𝑏𝑏𝑥𝑥 + ln(𝑉𝑉) 

 
As 𝑥𝑥 → ∞ (𝑡𝑡 → ∞) the asymptote straight line can be approximated as (not used for 
parameter estimate but more for model validity): 

𝑦𝑦 ≈ 𝜆𝜆 exp(𝑥𝑥) = 𝜆𝜆𝑡𝑡 
 
Intersections   (Lai et al. 2003): 
 
Y-Axis Intersection (0, 𝑥𝑥0) 

ln(𝑉𝑉) + 𝑏𝑏𝑥𝑥0 + 𝜆𝜆𝑒𝑒𝑖𝑖0 = 0 
X-Axis Intersection (𝑦𝑦0, 0) 

ln(𝑉𝑉) + 𝜆𝜆 = 𝑦𝑦0 
 
Solving these gives an approximate value for each parameter which can be used as an 
initial guess for numerical methods solving MLE or Bayesian methods. 
 
A typical WPP for an Modified Weibull Distribution is: 

 
WPP for modified Weibull distribution 𝑉𝑉 = 5, 𝑏𝑏 = 0.2, 𝜆𝜆 = 10 

 
  

Description , Limitations and Uses 

Characteristics  Parameter Characteristics:(Lai et al. 2003)  
𝟎𝟎 < 𝑏𝑏 < 1  𝑾𝑾𝒏𝒏𝑾𝑾 𝝀𝝀 > 0. The hazard rate has a bathtub curve 
shape.  ℎ(𝑡𝑡) → ∞ 𝑉𝑉𝑠𝑠 𝑡𝑡 → 0. ℎ(𝑡𝑡) → ∞ 𝑉𝑉𝑠𝑠 𝑡𝑡 → ∞. 
𝒃𝒃 ≥ 𝟏𝟏  𝑾𝑾𝒏𝒏𝑾𝑾 𝝀𝝀 > 0. Has an increasing hazard rate function. 
ℎ(0) = 0.  ℎ(𝑡𝑡) → ∞ 𝑉𝑉𝑠𝑠 𝑡𝑡 → ∞ . 
𝝀𝝀 = 𝟎𝟎. The function has the same form as a Weibull 
Distribution. ℎ(0) = 𝑉𝑉𝑏𝑏. ℎ(𝑡𝑡) → ∞ 𝑉𝑉𝑠𝑠 𝑡𝑡 → ∞ 
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Minimum Failure Rate. (Xie et al. 2004) When the hazard rate is a 
bathtub curve (0 < 𝑏𝑏 < 1  𝑉𝑉𝑛𝑛𝑑𝑑 𝜆𝜆 > 0) then the minimum failure rate 
point is given as: 

𝑡𝑡∗ =
√𝑏𝑏 − 𝑏𝑏
𝜆𝜆  

 
Maximum Mean Residual Life. (Xie et al. 2004) By solving the 
derivative of the MRL function to zero, the maximum MRL is found 
by solving to t: 
 

𝑉𝑉(𝑏𝑏 + 𝜆𝜆𝑡𝑡)𝑡𝑡𝑏𝑏−1𝑒𝑒𝜆𝜆𝑡𝑡 � exp (−𝑉𝑉𝑥𝑥𝑏𝑏𝑒𝑒(𝜆𝜆𝑖𝑖)𝑑𝑑𝑖𝑖
∞

𝑡𝑡
− exp�𝑉𝑉𝑡𝑡𝑏𝑏𝑒𝑒𝜆𝜆𝑡𝑡� = 0 

 
Shape. The shape of the hazard rate cannot have a flat “usage 
period” and a strong “wear out” gradient.  

Resources Books / Journals: 
Lai, C., Xie, M. & Murthy, D., 2003. A modified Weibull distribution. 
IEEE Transactions on Reliability, 52(1), 33-37.   
 
Murthy, D.N.P., Xie, M. & Jiang, R., 2003. Weibull Models 1st ed., 
Wiley-Interscience.   
 
Xie, M., Goh, T.N. & Tang, Y., 2004. On changing points of mean 
residual life and failure rate function for some generalized Weibull 
distributions. Reliability Engineering and System Safety, 84(3), 
293–299.   

 
Rinne, H., 2008. The Weibull Distribution: A Handbook 1st ed., 
Chapman & Hall/CRC.   
 
Balakrishnan, N. & Rao, C.R., 2001. Handbook of Statistics 20: 
Advances in Reliability 1st ed., Elsevier Science & Technology.   

Relationship to Other Distributions 

Weibull 
Distribution 
 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Special Case: 
𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) = 𝑀𝑀𝐶𝐶𝑑𝑑𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡; a = 𝛼𝛼, 𝑏𝑏 =  𝛽𝛽, 𝜆𝜆 = 0) 

 
 



  Univariate Continuous Distributions  85        
U

nivariate C
ont 

 
 
 
 
 
 
 
 
 
 

4. Univariate Continuous 
Distributions 

 
 
 



86  Univariate Continuous Distributions 
B

et
a 

4.1. Beta Continuous Distribution 
 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝛼𝛼 𝛼𝛼 > 0 Shape Parameter. 

𝛽𝛽 𝛽𝛽 > 0 Shape Parameter. 

𝑉𝑉𝐿𝐿 −∞ < 𝑉𝑉𝐿𝐿 < 𝑏𝑏𝑈𝑈 

Lower Bound: 𝑉𝑉𝐿𝐿  is the lower bound but 
has also been called a location 
parameter. In the standard Beta 
distribution 𝑉𝑉𝐿𝐿 = 0. 

𝑏𝑏𝑈𝑈 𝑉𝑉𝐿𝐿 < 𝑏𝑏𝑈𝑈 < ∞ 

Upper Bound: 𝑏𝑏𝑈𝑈 is the upper bound.  
In the standard Beta distribution 𝑏𝑏𝑈𝑈 = 1. 
The scale parameter may also be defined 
as 𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿. 

Limits 𝑉𝑉𝐿𝐿 < 𝑡𝑡 ≤ 𝑏𝑏𝑈𝑈 

Distribution Formulas 

𝐵𝐵(𝑥𝑥,𝑦𝑦) is the Beta function, 𝐵𝐵𝑡𝑡(𝑡𝑡|𝑥𝑥, 𝑦𝑦) is the incomplete Beta function, 𝐼𝐼𝑡𝑡(𝑡𝑡|𝑥𝑥, 𝑦𝑦) is the 
regularized Beta function, Γ(𝑘𝑘) is the complete gamma which is discussed in section 1.6. 

PDF 

General Form: 

𝑓𝑓(𝑡𝑡;𝛼𝛼,𝛽𝛽, 𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽) .

(𝑡𝑡 − 𝑉𝑉𝐿𝐿)𝛼𝛼−1(𝑏𝑏𝑈𝑈 − 𝑡𝑡)𝛽𝛽−1

(𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿)𝛼𝛼+𝛽𝛽−1  

 
When 𝑉𝑉𝐿𝐿 = 0, 𝑏𝑏𝑈𝑈 = 1: 

𝑓𝑓(𝑡𝑡|𝛼𝛼,𝛽𝛽) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽) . 𝑡𝑡𝛼𝛼−1(1 − 𝑡𝑡)𝛽𝛽−1 

=
1

𝐵𝐵(𝛼𝛼,𝛽𝛽) . 𝑡𝑡𝛼𝛼−1(1 − 𝑡𝑡)𝛽𝛽−1 

 

CDF 

F(t) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)  � 𝑢𝑢𝛼𝛼−1(1 − 𝑢𝑢)𝛽𝛽−1

𝑡𝑡

0
𝑑𝑑𝑢𝑢 

=
𝐵𝐵𝑡𝑡(𝑡𝑡|𝛼𝛼,𝛽𝛽)
𝐵𝐵(𝛼𝛼,𝛽𝛽)  

= 𝐼𝐼𝑡𝑡(𝑡𝑡|𝛼𝛼,𝛽𝛽) 
 

Reliability R(t) = 1 − 𝐼𝐼𝑡𝑡(𝑡𝑡|𝛼𝛼,𝛽𝛽) 

Conditional 
Survivor Function 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + x)
𝑅𝑅(𝑡𝑡) =

1 − 𝐼𝐼𝑡𝑡(𝑡𝑡 + 𝑥𝑥|𝛼𝛼,𝛽𝛽)
1 − 𝐼𝐼𝑡𝑡(𝑡𝑡|𝛼𝛼,𝛽𝛽)  

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

𝑢𝑢(𝑡𝑡) =
∫ {𝐵𝐵(α, β) − 𝐵𝐵x(x|α,β)}dx∞
t

𝐵𝐵(α, β) − 𝐵𝐵t(t|α,β)  

(Gupta and Nadarajah 2004, p.44) 
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Hazard Rate ℎ(𝑡𝑡) =
tα−1(1 − t)

𝐵𝐵(α, β) − 𝐵𝐵t(t|α, β) 

(Gupta and Nadarajah 2004, p.44) 

Properties and Moments 

Median Numerically solve for t: 
𝑡𝑡0.5 = 𝐹𝐹−1(𝛼𝛼,𝛽𝛽) 

Mode 
𝛼𝛼−1

𝛼𝛼+𝛽𝛽−2
 for 𝛼𝛼 > 1 𝑉𝑉𝑛𝑛𝑑𝑑 𝛽𝛽 > 1 

Mean - 1st Raw Moment 
α

α + β 

Variance - 2nd Central Moment 
αβ

(α + β)2(α + β + 1) 

Skewness - 3rd Central Moment 
2(β − α)�α + β + 1

(α + β + 2)�αβ
 

Excess kurtosis - 4th Central Moment 
6[𝛼𝛼3 + 𝛼𝛼2(1 − 2𝛽𝛽) + 𝛽𝛽2(1 + 𝛽𝛽) − 2𝛼𝛼𝛽𝛽(2 + 𝛽𝛽)]

𝛼𝛼𝛽𝛽(𝛼𝛼 + 𝛽𝛽 + 2)(𝛼𝛼 + 𝛽𝛽 + 3)  

Characteristic Function 

F11
 (α;α + β; it) 

 
Where F11

  is the confluent hypergeometric 
function defined as: 

F11
 (α;β; x) = �

(α)k
(β)k

.
𝑥𝑥𝑘𝑘

𝑘𝑘!  
∞

k=0

 

 
(Gupta and Nadarajah 2004, p.44) 

100p% Percentile Function Numerically solve for t: 
𝑡𝑡𝑝𝑝 = 𝐹𝐹−1(𝛼𝛼,𝛽𝛽) 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Functions 

L(α, β|E) =
Γ(𝛼𝛼 + 𝛽𝛽)nF
Γ(𝛼𝛼)Γ(𝛽𝛽) � 𝑡𝑡𝑖𝑖𝐹𝐹  𝛼𝛼−1�1− 𝑡𝑡𝑖𝑖𝐹𝐹�

𝛽𝛽−1nF

i=1�������������������������
failures

. 

 

Log-Likelihood 
Functions 

Λ(α,β|E) = nF{ln[𝛤𝛤(𝛼𝛼 + 𝛽𝛽) − 𝑠𝑠𝑛𝑛[𝛤𝛤(𝛼𝛼)]− 𝑠𝑠𝑛𝑛[𝛤𝛤(𝛽𝛽)]}

                 +(α − 1)� ln�tiF�
nF

i=1

+ (β − 1)� ln (1 − tiF)
nF

i=1

 

∂Λ
∂α = 0 

𝜓𝜓(α) − 𝜓𝜓(α + β) =
1

nF
 � ln (tiF)
nF

i=1

 

where 𝜓𝜓(𝑥𝑥) = 𝑑𝑑
𝑑𝑑𝑖𝑖

ln[Γ(𝑥𝑥)] is the digamma function see section 1.6.7. 
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(Johnson et al. 1995, p.223) 

∂Λ
∂β = 0 𝜓𝜓(β) − 𝜓𝜓(α + β) =

1
nF

 � ln (1 − ti)
nF

i=1

 

(Johnson et al. 1995, p.223) 

Point 
Estimates 

Point estimates are obtained by using numerical methods to solve the 
simultaneous equations above.   

Fisher 
Information 
Matrix 
 

𝐼𝐼(𝛼𝛼,𝛽𝛽) = �𝜓𝜓
′(𝛼𝛼) − 𝜓𝜓′(𝛼𝛼 + 𝛽𝛽) −𝜓𝜓′(𝛼𝛼 + 𝛽𝛽)
−𝜓𝜓′(𝛼𝛼 + 𝛽𝛽) 𝜓𝜓′(𝛽𝛽) −𝜓𝜓′(𝛼𝛼 + 𝛽𝛽)� 

 
where 𝜓𝜓′(𝑥𝑥) = 𝑑𝑑2

𝑑𝑑𝑖𝑖2
𝑠𝑠𝑛𝑛Γ(𝑥𝑥)  = ∑ (𝑥𝑥 + 𝑖𝑖)−2∞

𝑖𝑖=0  is the Trigamma function. 
See section 1.6.8. (Yang and Berger 1998, p.5) 

Confidence 
Intervals 

For a large number of samples the Fisher information matrix can be 
used to estimate confidence intervals. See section 1.4.7. 
 

Bayesian 

Non-informative Priors 

Jeffery’s Prior √det�𝐼𝐼(𝛼𝛼,𝛽𝛽)� 
where 𝐼𝐼(𝛼𝛼,𝛽𝛽) is given above.  

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝑝𝑝 
from 

𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘;𝑝𝑝) 
Bernoulli 𝑘𝑘 failures 

in 1 trail   Beta 𝛼𝛼0,𝛽𝛽0  𝛼𝛼 = 𝛼𝛼𝑜𝑜 + 𝑘𝑘 
𝛽𝛽 = 𝛽𝛽𝑜𝑜 + 1 − 𝑘𝑘 

𝑝𝑝  
from 

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘; 𝑝𝑝,𝑛𝑛) 
Binomial 𝑘𝑘 failures 

in 𝑛𝑛 trials Beta 𝛼𝛼𝑜𝑜,𝛽𝛽𝑜𝑜 𝛼𝛼 = 𝛼𝛼𝑜𝑜 + 𝑘𝑘 
β = βo + n − k 

Description , Limitations and Uses 

Example For examples on the use of the beta distribution as a conjugate prior 
see the binomial distribution.  
 
A non-homogeneous (operate in different environments) population 
of 5 switches have the following probabilities of failure on demand.  

0.1176, 0.1488, 0.3684, 0.8123, 0.9783 
 
Estimate the population variability function: 

1
nF

 � ln (tiF)
nF

i=1

= −1.0549 



90  Univariate Continuous Distributions 
B

et
a 

1
nF

 � ln (1 − ti)
nF

i=1

= −1.25 

 
Numerically Solving: 

𝜓𝜓(α) + 1.0549 = 𝜓𝜓(β) + 1.25 
Gives: 

𝛼𝛼� = 0.7369 
𝑏𝑏� = 0.6678 

𝐼𝐼(𝛼𝛼,𝛽𝛽) = � 1.5924 −1.0207
−1.0207 2.0347 � 

 
�𝐽𝐽𝑛𝑛�𝛼𝛼�, �̂�𝛽��−1 = �𝑛𝑛𝐹𝐹𝐼𝐼�𝛼𝛼�, �̂�𝛽��−1 = �0.1851 0.0929

0.0929 0.1449� 
 
90% confidence interval for 𝛼𝛼: 

�𝛼𝛼�. exp �
𝛷𝛷−1(0.95)√0.1851

−𝛼𝛼� � , 𝛼𝛼�. exp �
𝛷𝛷−1(0.95)√0.1851

𝛼𝛼� ��  

[0.282,    1.92]  
 
90% confidence interval for 𝛽𝛽: 

��̂�𝛽. exp �
𝛷𝛷−1(0.95)√0.1449

−�̂�𝛽
� , �̂�𝛽. exp �

𝛷𝛷−1(0.95)√0.1449
�̂�𝛽

��  

[0.262,    1.71]  
 

Characteristics  The Beta distribution was originally known as a Pearson Type I 
distribution (and Type II distribution which is a special case of a Type 
I).  
  
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼,𝛽𝛽) is the mirror distribution of 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛽𝛽,𝛼𝛼). If 𝑋𝑋~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼,𝛽𝛽) and 
let 𝑌𝑌 = 1 − 𝑋𝑋 then 𝑌𝑌~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛽𝛽,𝛼𝛼). 
 
Location / Scale Parameters (NIST Section 1.3.6.6.17) 
𝑉𝑉𝐿𝐿 and 𝑏𝑏𝑈𝑈 can be transformed into a location and scale parameter: 

𝑠𝑠𝐶𝐶𝑐𝑐𝑉𝑉𝑡𝑡𝑖𝑖𝐶𝐶𝑛𝑛 = 𝑉𝑉𝐿𝐿 
𝑠𝑠𝑐𝑐𝑉𝑉𝑠𝑠𝑒𝑒 = 𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿 

 
Shapes(Gupta and Nadarajah 2004, p.41): 

𝟎𝟎 < 𝛼𝛼 < 1. As 𝑥𝑥 → 0,𝑓𝑓(𝑥𝑥) → ∞. 
𝟎𝟎 < 𝛽𝛽 < 1. As 𝑥𝑥 → 1,𝑓𝑓(𝑥𝑥) → ∞. 
𝜶𝜶 > 1, 𝜷𝜷 > 1. As 𝑥𝑥 → 0,𝑓𝑓(𝑥𝑥) → 0. There is a single mode at 
𝛼𝛼−1

𝛼𝛼+𝛽𝛽−2
. 

𝜶𝜶 < 1, 𝜷𝜷 < 1. The distribution is a U shape. There is a 
single anti-mode at 𝛼𝛼−1

𝛼𝛼+𝛽𝛽−2
. 

𝜶𝜶 > 0, 𝜷𝜷 > 0. There exists inflection points at: 

𝛼𝛼 − 1
𝛼𝛼 + 𝛽𝛽 − 2 ±

1
𝛼𝛼 + 𝛽𝛽 − 2 .�

(𝛼𝛼 − 1)(𝛽𝛽 − 1)
𝛼𝛼 + 𝛽𝛽 − 3  
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𝜶𝜶 = 𝜷𝜷. The distribution is symmetrical about 𝑥𝑥 = 0.5. As 
𝛼𝛼 = 𝛽𝛽 becomes large, the beta distribution approaches the 
normal distribution. The Standard Uniform Distribution 
arises when 𝛼𝛼 = 𝛽𝛽 = 1. 
𝜶𝜶 = 𝟏𝟏, 𝜷𝜷 = 𝝈𝝈 or 𝜶𝜶 = 𝝈𝝈, 𝜷𝜷 = 𝟏𝟏. Straight line.  
(𝜶𝜶–𝟏𝟏)(𝜷𝜷–𝟏𝟏) < 0. J Shaped. 

 
Hazard Rate and MRL (Gupta and Nadarajah 2004, p.45): 

𝜶𝜶 ≥ 𝟏𝟏, 𝜷𝜷 ≥ 𝟏𝟏. ℎ(𝑡𝑡) is increasing. 𝑢𝑢(𝑡𝑡) is decreasing. 
𝜶𝜶 ≤ 𝟏𝟏, 𝜷𝜷 ≤ 𝟏𝟏. ℎ(𝑡𝑡) is decreasing. 𝑢𝑢(𝑡𝑡) is increasing. 
𝜶𝜶 > 1, 0 < 𝛽𝛽 < 1. ℎ(𝑡𝑡) is bathtub shaped and 𝑢𝑢(𝑡𝑡) is an 
upside down bathtub shape. 
𝟎𝟎 < 𝛼𝛼 < 1, 𝜷𝜷 > 1. ℎ(𝑡𝑡) is upside down bathtub shaped and 
𝑢𝑢(𝑡𝑡) is bathtub shape. 

 

Applications 

Parameter Model. The Beta distribution is often used to model 
parameters which are constrained to take place between an interval. 
In particular the distribution of a probability parameter 0 ≤ 𝑝𝑝 ≤ 1 is 
popular with the Beta distribution.  

Bayesian Analysis. The Beta distribution is often used as a 
conjugate prior in Bayesian analysis for the Bernoulli, Binomial and 
Geometric Distributions to produce closed form posteriors. The 
Beta(0,0) distribution is an improper prior sometimes used to 
represent ignorance of parameter values. The Beta(1,1) is a 
standard uniform distribution which may be used as a non-
informative prior. When used as a conjugate prior to a Bernoulli or 
Binomial process the parameter 𝛼𝛼 may represent the number of 
successes and 𝛽𝛽 the total number of failures with the total number of 
trials being 𝑛𝑛 = 𝛼𝛼 + 𝛽𝛽. 

Proportions. Used to model proportions. An example of this is the 
likelihood ratios for estimating uncertainty.  

Resources 

Online: 
http://mathworld.wolfram.com/BetaDistribution.html 
http://en.wikipedia.org/wiki/Beta_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (interactive web 
calculator) 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm  
 
Books: 
Gupta, A.K. & Nadarajah, S., 2004. Handbook of beta distribution 
and its applications, CRC Press.   
 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1995. Continuous 
Univariate Distributions, Vol. 2 2nd ed., Wiley-Interscience.   
 

Relationship to Other Distributions 

http://mathworld.wolfram.com/BetaDistribution.html
http://en.wikipedia.org/wiki/Beta_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
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Chi-square 
Distribution 
 

𝜒𝜒2(𝑡𝑡;𝐶𝐶) 

Let  

Xi~𝜒𝜒2(𝐶𝐶𝑖𝑖)           𝑉𝑉𝑛𝑛𝑑𝑑           Y =
X1

X1 + X2
 

Then 
Y~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 �𝛼𝛼 = 1

2
𝐶𝐶1,𝛽𝛽 = 1

2
𝐶𝐶2� 

 

Uniform 
Distribution 
 

𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑡𝑡; 𝑉𝑉, 𝑏𝑏) 

Let  
Xi~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(0,1)          𝑉𝑉𝑛𝑛𝑑𝑑           X1 ≤ X2 ≤ ⋯ ≤ Xn 

Then 
Xr~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑟𝑟,𝑛𝑛 − 𝑟𝑟 + 1) 

Where 𝑛𝑛 and 𝑟𝑟 are integers. 
 
Special Case: 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡; 1,1,𝑉𝑉, 𝑏𝑏) = 𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑡𝑡;𝑉𝑉, 𝑏𝑏) 
 

Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎) 

For large 𝛼𝛼 and 𝛽𝛽 with fixed 𝛼𝛼/𝛽𝛽: 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼,𝛽𝛽) ≈ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µ =
α

α + β ,𝜎𝜎 = �
αβ

(α + β)2(α + β + 1)� 

 
As 𝛼𝛼 and 𝛽𝛽 increase the mean remains constant and the variance is 
reduced. 
 

Gamma 
Distribution 
 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡; k, λ) 

Let  

𝑋𝑋1,𝑋𝑋2~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(ki, λi)           𝑉𝑉𝑛𝑛𝑑𝑑           Y =
X1

X1 + X2
 

Then 
Y~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼 = 𝑘𝑘1,𝛽𝛽 = 𝑘𝑘2) 

Dirichlet 
Distribution 
 

𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑(𝑥𝑥;𝜶𝜶) 

Special Case: 
𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑=1(x; [α1,α0]) = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑘𝑘 = 𝑥𝑥;𝛼𝛼 = 𝛼𝛼1,𝛽𝛽 = 𝛼𝛼0) 
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4.2. Birnbaum Saunders Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters β β > 0 Scale parameter. β  is the scale 
parameter equal to the median. 

𝛼𝛼 α > 0 Shape parameter.  

Limits 0 < t <  ∞ 
 

Distribution Formulas 

PDF 

𝑓𝑓(𝑡𝑡) =
�t β⁄ + �β t⁄

2𝛼𝛼𝑡𝑡√2𝜋𝜋
exp � −

1
2�

�t β⁄ − �β t⁄
𝛼𝛼 �

2

� 

=
�t β⁄ + �β t⁄

2𝛼𝛼𝑡𝑡 ϕ(z) 
 
where 𝜙𝜙(𝑧𝑧) is the standard normal pdf and: 

𝑧𝑧𝐵𝐵𝑆𝑆 =
�t β⁄ − �β t⁄

𝛼𝛼  

CDF 𝐹𝐹(𝑡𝑡) = Φ�
�t β⁄ − �β t⁄

𝛼𝛼 � 

= Φ(𝑧𝑧𝐵𝐵𝑆𝑆) 

Reliability R(t) = Φ�
�β t⁄ − �t β⁄

𝛼𝛼 � 

= Φ(−𝑧𝑧𝐵𝐵𝑆𝑆) 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

Φ(−𝑧𝑧𝐵𝐵𝑆𝑆′ )
Φ(−𝑧𝑧𝐵𝐵𝑆𝑆) 

Where  

𝑧𝑧𝐵𝐵𝑆𝑆 =
�t β⁄ − �β t⁄

𝛼𝛼 , 𝑧𝑧𝐵𝐵𝑆𝑆′ =
�(t + x) β⁄ − �β (t + x)⁄

𝛼𝛼  
 
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.  
  

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) =

∫ Φ(−𝑧𝑧𝐵𝐵𝑆𝑆)𝑑𝑑𝑥𝑥∞
𝑡𝑡

Φ(−𝑧𝑧𝐵𝐵𝑆𝑆)  

Hazard Rate ℎ(𝑡𝑡) =
�t β⁄ + �β t⁄

2𝛼𝛼𝑡𝑡 �
ϕ(zBS)
Φ(−𝑧𝑧𝐵𝐵𝑆𝑆)�  

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = − ln[Φ(−𝑧𝑧𝐵𝐵𝑆𝑆)]  
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Properties and Moments 

Median β 

Mode Numerically solve for 𝑡𝑡: 
𝑡𝑡3 + 𝛽𝛽(1 + 𝛼𝛼2)𝑡𝑡2 + 𝛽𝛽2(3𝛼𝛼2 − 1)𝑡𝑡 − 𝛽𝛽3 = 0 

Mean - 1st Raw Moment 
β�1 +

α2

2 � 

Variance - 2nd Central Moment 
α2β2 �1 +

5α2

4 � 

Skewness - 3rd Central Moment 4α(11α2 + 6)

(5α2 + 4)
3
2

 

 
(Lemonte et al. 2007) 

Excess kurtosis - 4th Central Moment 
3 +

6α2(93α2 + 40)
(5α2 + 4)2  

 
(Lemonte et al. 2007) 

100𝛾𝛾 % Percentile Function 𝑡𝑡𝛾𝛾 =
β
4 �αΦ

−1(γ) + �4 + [αΦ−1(γ)]2�
2
 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Function 

For complete data: 

𝐿𝐿(𝜃𝜃,𝛼𝛼|𝐸𝐸) = �
�ti β⁄ + �β ti⁄

2𝛼𝛼𝑡𝑡𝑖𝑖√2𝜋𝜋
exp � −

1
2�

�ti β⁄ − �β ti⁄
𝛼𝛼 �

2

�
nF

i=1���������������������������������
failures

 

Log-Likelihood 
Function Λ(𝛼𝛼,𝛽𝛽|𝐸𝐸) = −nF ln(αβ) + � ln ��

𝛽𝛽
𝑡𝑡𝑖𝑖
�
1
2

+ �
𝛽𝛽
𝑡𝑡𝑖𝑖
�
3
2
� −

1
2𝛼𝛼2��

𝑡𝑡𝑖𝑖
𝛽𝛽 +

𝛽𝛽
𝑡𝑡𝑖𝑖
− 2�

𝑛𝑛𝐹𝐹

𝑖𝑖=1

𝑛𝑛𝐹𝐹

𝑖𝑖=1���������������������������������������
failures

 

∂Λ
∂α = 0 ∂Λ

∂α = −
nF
α �1 +

2
α2� +

1
α3β�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

+
𝛽𝛽
𝛼𝛼3�

1
𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1�������������������������
failures

= 0 

 

∂Λ
∂β = 0 ∂Λ

∂β = −
nF
2β+ �

1
𝑡𝑡𝑖𝑖 + 𝛽𝛽

𝑛𝑛𝐹𝐹

𝑖𝑖=1

+
1

2𝛼𝛼2𝛽𝛽2�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

−
1

2𝛼𝛼2�
1
𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1�����������������������������
failures

= 0 

MLE Point �̂�𝛽 is found by solving: 
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Estimates  
𝛽𝛽2 − 𝛽𝛽[2𝑅𝑅 + 𝑅𝑅(𝛽𝛽)] + 𝑅𝑅[𝑆𝑆 + 𝑅𝑅(𝛽𝛽)] = 0 

where 

𝑅𝑅(𝛽𝛽) = �
1
𝑛𝑛�

1
𝛽𝛽 + 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�

−1

, 𝑆𝑆 =
1
𝑛𝑛𝐹𝐹

�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

, 𝑅𝑅 = �
1
𝑛𝑛𝐹𝐹

�
1
𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�

−1

 

 
Point estimates for 𝛼𝛼� is: 

𝛼𝛼� = �
𝑆𝑆
�̂�𝛽

+
�̂�𝛽
𝑅𝑅 − 2 

(Lemonte et al. 2007) 

Fisher 
Information 

𝐼𝐼(𝜃𝜃,𝛼𝛼) =

⎣
⎢
⎢
⎡

2
𝛼𝛼2 0

0
𝛼𝛼(2𝜋𝜋)−1 2⁄ 𝑘𝑘(𝛼𝛼) + 1

𝛼𝛼2𝛽𝛽2 ⎦
⎥
⎥
⎤
 

where 

𝑘𝑘(𝛼𝛼) = 𝛼𝛼�
𝜋𝜋
2 − 𝜋𝜋 exp �

2
𝛼𝛼2� �1 −Φ�

2
𝛼𝛼�� 

(Lemonte et al. 2007) 

100𝛾𝛾% 
Confidence 
Intervals  

Calculated from the Fisher information matrix. See section 1.4.7. For a 
literature review of proposed confidence intervals see (Lemonte et al. 
2007). 

Description , Limitations and Uses 

Example 5 components are put on a test with the following failure times: 
98, 116, 2485, 2526, , 2920 hours 

 

𝑆𝑆 =
1
𝑛𝑛𝐹𝐹

�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

= 1629  

𝑅𝑅 = �
1
𝑛𝑛𝐹𝐹

�
1
𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�

−1

= 250.432 

Solving: 

𝛽𝛽2 − 𝛽𝛽 �2𝑅𝑅 + �
1
𝑛𝑛�

1
𝛽𝛽 + 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�

−1

� + 𝑅𝑅 �𝑆𝑆 + �
1
𝑛𝑛�

1
𝛽𝛽 + 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�

−1

� = 0 

 
β� = 601.949 

 

     𝛼𝛼� = �
𝑆𝑆
�̂�𝛽

+
�̂�𝛽
𝑅𝑅 − 2 = 1.763 
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90% confidence interval for 𝛼𝛼: 

⎣
⎢
⎢
⎡
𝛼𝛼�. exp

⎩
⎨

⎧𝛷𝛷−1(0.95)� 𝛼𝛼2
2𝑛𝑛𝐹𝐹

−𝛼𝛼�
⎭
⎬

⎫
, 𝛼𝛼�. exp

⎩
⎨

⎧𝛷𝛷−1(0.95)� 𝛼𝛼2
2𝑛𝑛𝐹𝐹

𝛼𝛼�
⎭
⎬

⎫

⎦
⎥
⎥
⎤
  

[1.048, 2.966]  
 
90% confidence interval for 𝛽𝛽: 

𝑘𝑘(𝛼𝛼�) = 𝛼𝛼��
𝜋𝜋
2
− 𝜋𝜋 exp �

2
𝛼𝛼�2� �1 −Φ�

2
𝛼𝛼��� = 1.442 

𝐼𝐼𝛽𝛽𝛽𝛽 =
𝛼𝛼�(2𝜋𝜋)−1 2⁄ 𝑘𝑘(𝛼𝛼�) + 1

𝛼𝛼�2�̂�𝛽2
= 10.335𝐸𝐸-6 

 

⎣
⎢
⎢
⎡
�̂�𝛽. exp

⎩
⎨

⎧𝛷𝛷−1(0.95)�96762
𝑛𝑛𝐹𝐹

−�̂�𝛽
⎭
⎬

⎫
, �̂�𝛽. exp

⎩
⎨

⎧𝛷𝛷−1(0.95)�96762
𝑛𝑛𝐹𝐹

−�̂�𝛽
⎭
⎬

⎫

⎦
⎥
⎥
⎤
  

[100.4,   624.5]  
 
Note that this confidence interval uses the assumption of the 
parameters being normally distributed which is only true for large 
sample sizes. Therefore these confidence intervals may be 
inaccurate. Bayesian methods must be done numerically. 

Characteristics  The Birnbaum-Saunders distribution is a stochastic model of the 
Miner’s rule.  
 
Characteristic of 𝜶𝜶. As 𝛼𝛼 decreases the distribution becomes more 
symmetrical around the value of 𝛽𝛽. 
 
Hazard Rate. The hazard rate is always unimodal. The hazard rate 
has the following asymptotes: (Meeker & Escobar 1998, p.107) 

ℎ(0) = 0 

lim
𝑡𝑡→∞

ℎ(𝑡𝑡) =
1

2𝛽𝛽𝛼𝛼2 

The change point of the unimodal hazard rate for 𝛼𝛼 < 0.6 must be 
solved numerically, however for 𝛼𝛼 > 0.6 can be approximated using: 
(Kundu et al. 2008) 

𝑡𝑡𝑐𝑐 =
𝛽𝛽

(−0.4604 + 1.8417𝛼𝛼)2 

 
Lognormal and Inverse Gaussian Distribution. The shape and 
behavior of the Birnbaum-Saunders distribution is similar to that of 
the lognormal and inverse Gaussian distribution. This similarity is 
seen primarily in the center of the distributions. (Meeker & Escobar 
1998, p.107) 
 
Let: 

𝑇𝑇~𝐵𝐵𝑆𝑆(𝑡𝑡;𝛼𝛼,𝛽𝛽) 
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Scaling property (Meeker & Escobar 1998, p.107) 
𝑐𝑐𝑇𝑇~𝐵𝐵𝑆𝑆(𝑡𝑡;𝛼𝛼, 𝑐𝑐𝛽𝛽) 

where 𝑐𝑐 > 0 
 
Inverse property (Meeker & Escobar 1998, p.107) 
 

1
𝑇𝑇~𝐵𝐵𝑆𝑆 �𝑡𝑡;𝛼𝛼,

1
𝛽𝛽� 

Applications Fatigue-Fracture. The distribution has been designed to model 
crack growth to critical crack size. The model uses the Miner’s rule 
which allows for non-constant fatigue cycles through accumulated 
damage. The assumption is that the crack growth during any one 
cycle is independent of the growth during any other cycle. The growth 
for each cycle has the same distribution from cycle to cycle. This is 
different from the proportional degradation model used to derive the 
log normal distribution model, with the rate of degradation being 
dependent on accumulated damage. 
(http://www.itl.nist.gov/div898/handbook/apr/section1/apr166.htm) 
 

Resources Online: 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366a.htm 
http://www.itl.nist.gov/div898/handbook/apr/section1/apr166.htm 
http://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distrib
ution 
 
Books: 
Birnbaum, Z.W. & Saunders, S.C., 1969. A New Family of Life 
Distributions. Journal of Applied Probability, 6(2), 319-327.   
 
Lemonte, A.J., Cribari-Neto, F. & Vasconcellos, K.L., 2007. Improved 
statistical inference for the two-parameter Birnbaum-Saunders 
distribution. Computational Statistics & Data Analysis, 51(9), 4656-
4681.   
 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1995. Continuous 
Univariate Distributions, Vol. 2, 2nd ed., Wiley-Interscience.   
 
Rausand, M. & Høyland, A., 2004. System reliability theory, Wiley-
IEEE.   
 

 
 
 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366a.htm
http://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution
http://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution
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4.3. Gamma Continuous Distribution 
 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝜆𝜆 𝜆𝜆 > 0 

Scale Parameter: Equal to the rate 
(frequency) of events/shocks. 
Sometimes defined as 1/𝜃𝜃 where 𝜃𝜃 is the 
average time between events/shocks. 

𝑘𝑘 𝑘𝑘 > 0 

Shape Parameter: As an integer 𝑘𝑘 can be 
interpreted as the number of 
events/shocks until failure. When not 
restricted to an integer, 𝑘𝑘 and be 
interpreted as a measure of the ability to 
resist shocks. 

Limits 𝑡𝑡 ≥  0 

Distribution When k is an integer  
(Erlang distribution) 

When k is continuous 

Γ(𝑘𝑘) is the complete gamma function. Γ(𝑘𝑘, 𝑡𝑡) and 𝛾𝛾(𝑘𝑘, 𝑡𝑡) are the incomplete gamma 
functions see section 1.6. 

PDF 
𝑓𝑓(𝑡𝑡) =

𝜆𝜆𝑘𝑘𝑡𝑡𝑘𝑘−1

(k − 1)! e−λt 

 
 

𝑓𝑓(𝑡𝑡) =
𝜆𝜆𝑘𝑘𝑡𝑡𝑘𝑘−1

Γ(𝑘𝑘) e−λt 

 
with Laplace transformation: 

𝑓𝑓(𝑠𝑠) = �
𝜆𝜆

𝜆𝜆 + 𝑠𝑠�
k

 
 

CDF 𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝑡𝑡 �
(𝜆𝜆𝑡𝑡)𝑛𝑛

𝑛𝑛!

𝑘𝑘−1

𝑛𝑛=0

 
𝐹𝐹(𝑡𝑡) =

𝛾𝛾(𝑘𝑘, 𝜆𝜆𝑡𝑡)
𝛤𝛤(𝑘𝑘)  

=
1

𝛤𝛤(𝑘𝑘)� 𝑥𝑥𝑘𝑘−1𝑒𝑒−𝑖𝑖  𝑑𝑑𝑥𝑥
𝜆𝜆𝑡𝑡

0
 

Reliability 𝑅𝑅(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝑡𝑡 �
(𝜆𝜆𝑡𝑡)𝑛𝑛

𝑛𝑛!

𝑘𝑘−1

𝑛𝑛=0

 
𝑅𝑅(𝑡𝑡) =

𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡)
𝛤𝛤(𝑘𝑘)  

=
1

𝛤𝛤(𝑘𝑘)� 𝑥𝑥𝑘𝑘−1𝑒𝑒−𝑖𝑖 𝑑𝑑𝑥𝑥
∞

𝜆𝜆𝑡𝑡
 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑒𝑒−𝜆𝜆𝑖𝑖
∑ [𝜆𝜆(𝑡𝑡 + 𝑥𝑥)]𝑛𝑛

𝑛𝑛!
𝑘𝑘−1
𝑛𝑛=0

∑ (𝜆𝜆𝑡𝑡)𝑛𝑛
𝑛𝑛!

𝑘𝑘−1
𝑛𝑛=0

 𝑚𝑚(𝑥𝑥) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡 + 𝜆𝜆𝑥𝑥))
𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡)  

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

𝑢𝑢(𝑡𝑡) =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡
𝑅𝑅(𝑡𝑡)  𝑢𝑢(𝑡𝑡) =

∫ 𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡
𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡)  

The mean residual life does not have a closed form but has the 
expansion: 
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𝑢𝑢(𝑡𝑡) = 1 +
𝑘𝑘 − 1
𝑡𝑡 +

(𝑘𝑘 − 1)(𝑘𝑘 − 2)
𝑡𝑡2 + 𝑂𝑂(𝑡𝑡−3) 

Where 𝑂𝑂(𝑡𝑡−3) is Landau's notation. (Kleiber & Kotz 2003, p.161) 

Hazard Rate 

ℎ(𝑡𝑡) =
𝜆𝜆𝑘𝑘𝑡𝑡𝑘𝑘−1

𝛤𝛤(𝑘𝑘)∑ (𝜆𝜆𝑡𝑡)𝑛𝑛
𝑛𝑛!

𝑘𝑘−1
𝑛𝑛=0

 

 

ℎ(𝑡𝑡) =
𝜆𝜆𝑘𝑘𝑡𝑡𝑘𝑘−1

𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡) 𝑒𝑒
−𝜆𝜆𝑡𝑡 

 

Series expansion of the hazard rate is: (Kleiber & Kotz 2003, p.161) 

ℎ(𝑡𝑡) = �
(𝑘𝑘 − 1)(𝑘𝑘 − 2)

𝑡𝑡2 + 𝑂𝑂(𝑡𝑡−3)�
−1

 

Limits of ℎ(𝑡𝑡) (Rausand & Høyland 2004)   
 

lim
𝑡𝑡→0

ℎ(𝑡𝑡) = ∞    𝑉𝑉𝑛𝑛𝑑𝑑   lim
𝑡𝑡→∞

ℎ(𝑡𝑡) = 𝜆𝜆   𝑤𝑤ℎ𝑒𝑒𝑛𝑛 0 < 𝑘𝑘 < 1 
 

lim
𝑡𝑡→0

ℎ(𝑡𝑡) = 0    𝑉𝑉𝑛𝑛𝑑𝑑   lim
𝑡𝑡→∞

ℎ(𝑡𝑡) = 𝜆𝜆   𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑘𝑘 ≥ 1        
 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = 𝜆𝜆𝑡𝑡 − 𝑠𝑠𝑛𝑛 ��

(𝜆𝜆𝑡𝑡)𝑛𝑛

𝑛𝑛!

𝑘𝑘−1

𝑛𝑛=0

� 

 

𝐻𝐻(𝑡𝑡) = − 𝑠𝑠𝑛𝑛 �
𝛤𝛤(𝑘𝑘, 𝜆𝜆𝑡𝑡)
𝛤𝛤(𝑘𝑘) � 

 

Properties and Moments 

Median 

Numerically solve for t when: 
𝑡𝑡0.5 = 𝐹𝐹−1(0.5;𝑘𝑘, 𝜆𝜆) 

or 
γ(k, λt) = Γ(k, λt) 

 
where  γ(k, λt) is the lower incomplete 
gamma function, see section 1.6.6. 

Mode 

𝑘𝑘 − 1
𝜆𝜆   𝑓𝑓𝐶𝐶𝑟𝑟 𝑘𝑘 ≥ 1 

 
𝑁𝑁𝐶𝐶 𝑚𝑚𝐶𝐶𝑑𝑑𝑒𝑒 𝑓𝑓𝐶𝐶𝑟𝑟 0 < 𝑘𝑘 < 1 

Mean - 1st Raw Moment 
k
𝜆𝜆 

Variance - 2nd Central Moment 
k
𝜆𝜆2 

Skewness - 3rd Central Moment 2/√𝑘𝑘 

Excess kurtosis - 4th Central Moment 6/𝑘𝑘 

Characteristic Function �1 −
it
λ�

−k
 

100α% Percentile Function Numerically solve for t: 
𝑡𝑡𝛼𝛼 = 𝐹𝐹−1(𝛼𝛼; 𝑘𝑘, 𝜆𝜆) 



102  Univariate Continuous Distributions 
G

am
m

a 

Parameter Estimation 

Maximum Likelihood Function  

Likelihood 
Functions 

𝐿𝐿(𝑘𝑘, 𝜆𝜆|𝐸𝐸) =
𝜆𝜆𝑘𝑘𝑛𝑛𝐹𝐹
Γ(𝑘𝑘)𝑛𝑛𝐹𝐹�𝑡𝑡𝑖𝑖𝑘𝑘−1e−λti

nF

i=1���������������
failures

 

 

Log-Likelihood 
Functions Λ(𝑘𝑘,𝜆𝜆|𝐸𝐸) = 𝑘𝑘𝑛𝑛𝐹𝐹 ln(𝜆𝜆) − 𝑛𝑛𝐹𝐹 ln�𝛤𝛤(𝑘𝑘)� + (k − 1)� ln(ti)

nF

i=1

− λ� ti

nF

i=1

 

∂Λ
∂k = 0 

0 = 𝑛𝑛𝐹𝐹ln (λ) − 𝑛𝑛𝐹𝐹𝜓𝜓(𝑘𝑘) + �{ln(ti)}
nF

i=1

 

where 𝜓𝜓(𝑥𝑥) = 𝑑𝑑
𝑑𝑑𝑖𝑖

ln[Γ(𝑥𝑥)] is the digamma function see section 1.6.7. 

∂Λ
∂λ = 0 0 =

𝑘𝑘𝑛𝑛𝐹𝐹
λ −� ti

nF

i=1

 

Point 
Estimates 

Point estimates for 𝑘𝑘� and �̂�𝜆 are obtained by using numerical methods to 
solve the simultaneous equations above.  (Kleiber & Kotz 2003, p.165) 

Fisher 
Information 
Matrix 
 

𝐼𝐼(𝑘𝑘, 𝜆𝜆) = �𝜓𝜓
′(𝑘𝑘) 𝜆𝜆
𝜆𝜆 𝑘𝑘𝜆𝜆2

� 

 
where 𝜓𝜓′(𝑥𝑥) = 𝑑𝑑2

𝑑𝑑𝑖𝑖2
𝑠𝑠𝑛𝑛Γ(𝑥𝑥)  = ∑ (𝑥𝑥 + 𝑖𝑖)−2∞

𝑖𝑖=0  is the Trigamma function. 
(Yang and Berger 1998, p.10) 

Confidence 
Intervals 

For a large number of samples the Fisher information matrix can be 
used to estimate confidence intervals.  

Bayesian 

Non-informative Priors,  𝝅𝝅(𝒌𝒌,𝝀𝝀)  
 (Yang and Berger 1998, p.6) 

Type Prior Posterior 

Uniform Improper 
Prior with limits: 

𝜆𝜆 ∈ (0,∞) 
𝑘𝑘 ∈ (0,∞) 

1 No Closed Form 

Jeffrey’s Prior 𝜆𝜆�𝑘𝑘.𝜓𝜓′(𝑘𝑘) − 1 No Closed Form 

Reference 
Order:  

{𝑘𝑘, 𝜆𝜆} 
𝜆𝜆�𝑘𝑘.𝜓𝜓′(𝑘𝑘) −

1
𝛼𝛼 

No Closed Form 

Reference 
Order:  

{𝜆𝜆,𝑘𝑘} 

𝜆𝜆�𝜓𝜓′(𝑘𝑘) No Closed Form 
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where 𝜓𝜓′(𝑥𝑥) = 𝑑𝑑2

𝑑𝑑𝑖𝑖2
𝑠𝑠𝑛𝑛Γ(𝑥𝑥)  = ∑ (𝑥𝑥 + 𝑖𝑖)−2∞

𝑖𝑖=0  is the Trigamma function 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior 
Parameters 

Λ  
from 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡;Λ) 
Exponential 

𝑛𝑛𝐹𝐹 
failures in 

𝑡𝑡𝑇𝑇  
Gamma 𝑘𝑘0, 𝜆𝜆0  

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 
𝜆𝜆 = 𝜆𝜆𝑜𝑜 + 𝑡𝑡𝑇𝑇 

Λ  
from 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘;Λ𝑡𝑡) 
Poisson 

𝑛𝑛𝐹𝐹 
failures in 

𝑡𝑡𝑇𝑇  
Gamma 𝑘𝑘0, 𝜆𝜆0  

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 
𝜆𝜆 = 𝜆𝜆𝑜𝑜 + 𝑡𝑡𝑇𝑇 

𝜆𝜆  
where 
𝜆𝜆 = 𝛼𝛼−𝛽𝛽 

from 
𝑊𝑊𝑏𝑏𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

Weibull with 
known 𝛽𝛽 

𝑛𝑛𝐹𝐹 
failures 
at times 

𝑡𝑡𝑖𝑖 

Gamma 𝑘𝑘0, 𝜆𝜆0  

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 

𝜆𝜆 = 𝜆𝜆𝑜𝑜 + �𝑡𝑡𝑖𝑖
𝛽𝛽

𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

(Rinne 2008, p.520) 

𝜎𝜎2 
from 

𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑥𝑥;𝜇𝜇,𝜎𝜎2) 

Normal with 
known 𝜇𝜇 

𝑛𝑛𝐹𝐹 
failures 
at times 

𝑡𝑡𝑖𝑖 

Gamma 𝑘𝑘0, 𝜆𝜆0  
𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹/2 

𝜆𝜆 = 𝜆𝜆𝑜𝑜 +
1
2�

(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛

𝑖𝑖=1  
𝜆𝜆 

from 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑥𝑥; 𝜆𝜆,𝑘𝑘)  

Gamma with 
known 𝑘𝑘 =

𝑘𝑘𝐵𝐵 

𝑛𝑛𝐹𝐹 
failures in 

𝑡𝑡𝑇𝑇  
Gamma 𝜂𝜂0,Λ0  𝜂𝜂 = 𝜂𝜂0 + 𝑛𝑛𝐹𝐹𝑘𝑘𝐵𝐵  

Λ = Λ𝑜𝑜 + 𝑡𝑡𝑇𝑇 

𝛼𝛼 
from 

𝑃𝑃𝑒𝑒𝑟𝑟𝑉𝑉𝑡𝑡𝐶𝐶(𝑡𝑡;𝜃𝜃,𝛼𝛼) 

Pareto with 
known 𝜃𝜃 

𝑛𝑛𝐹𝐹 
failures 
at times 

𝑡𝑡𝑖𝑖 

Gamma k0, λ0 

k = k𝑜𝑜 + 𝑛𝑛𝐹𝐹 

λ = λ𝑜𝑜 + � ln �
𝑥𝑥𝑖𝑖
𝜃𝜃 �

𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

where:    𝑡𝑡𝑇𝑇 = ∑ tiF + ∑ tiS = 𝑡𝑡𝐶𝐶𝑡𝑡𝑉𝑉𝑠𝑠 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 𝑖𝑖𝑛𝑛 𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 

Description , Limitations and Uses 

Example 1 For an example using the gamma distribution as a conjugate prior 
see the Poisson or Exponential distributions.  
 
A renewal process has an exponential time between failure with 
parameter 𝜆𝜆 = 0.01 under the homogeneous Poisson process 
conditions. What is the probability the forth failure will occur before 
200 hours.  
 

𝐹𝐹(200; 4,0.01) = 0.1429 

Example 2 5 components are put on a test with the following failure times: 
38, 42, 44, 46, 55  hours 

Solving: 

0 =
5𝑘𝑘
λ − 225 

0 = 5ln (λ) − 5𝜓𝜓(𝑘𝑘) + 18.9954 
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Gives: 
k� = 21.377 

 
     �̂�𝜆 = 0.4749 

 
90% confidence interval for 𝑘𝑘: 

𝐼𝐼(𝑘𝑘, 𝜆𝜆) = �0.0479 0.4749
0.4749 4.8205� 

 
�𝐽𝐽𝑛𝑛�𝑘𝑘� , �̂�𝜆��−1 = �𝑛𝑛𝐹𝐹𝐼𝐼�𝑘𝑘�, �̂�𝜆��−1 = �179.979 −17.730

−17.730 1.7881 � 
 

�𝑘𝑘�. exp �
𝛷𝛷−1(0.95)√179.979

−𝑘𝑘�
� , 𝑘𝑘� . exp �

𝛷𝛷−1(0.95)√179.979
𝑘𝑘�

��  

[7.6142, 60.0143]  
 
90% confidence interval for 𝜆𝜆: 
 

��̂�𝜆. exp �
𝛷𝛷−1(0.95)√1.7881

−�̂�𝜆
� , �̂�𝜆. exp �

𝛷𝛷−1(0.95)√1.7881
�̂�𝜆

��  

[0.0046, 48.766]  
 
Note that this confidence interval uses the assumption of the 
parameters being normally distributed which is only true for large 
sample sizes. Therefore these confidence intervals may be 
inaccurate. Bayesian methods must be done numerically. 

Characteristics  The gamma distribution was originally known as a Pearson Type III 
distribution. This distribution includes a location parameter 𝛾𝛾 which 
shifts the distribution along the x-axis. 
  

𝑓𝑓(𝑡𝑡;𝑘𝑘, 𝜆𝜆, 𝛾𝛾) =
𝜆𝜆𝑘𝑘(𝑡𝑡 − 𝛾𝛾)𝑘𝑘−1

Γ(𝑘𝑘) e−λ(t−γ) 

 
When k is an integer, the Gamma distribution is called an Erlang 
distribution.   
 
𝒌𝒌 Characteristics: 

𝒌𝒌 < 1.     𝑓𝑓(0) = ∞. There is no mode.  
𝒌𝒌 = 𝟏𝟏. 𝑓𝑓(0) = 𝜆𝜆. The gamma distribution reduces to an 
exponential distribution with failure rate λ. Mode at 𝑡𝑡 = 0. 
𝒌𝒌 > 1.     𝑓𝑓(0) = 0 
Large 𝒌𝒌. The gamma distribution approaches a normal 

distribution with 𝜇𝜇 = 𝑘𝑘
𝜆𝜆

,𝜎𝜎 = �𝑘𝑘
𝜆𝜆2

. 

 
 

Homogeneous Poisson Process (HPP). Components with an 
exponential time to failure which undergo instantaneous renewal with 
an identical item undergo a HPP. The Gamma distribution is 
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probability distribution of the kth failed item and is derived from the 
convolution of 𝑘𝑘 exponentially distributed random variables, 𝑇𝑇𝑖𝑖. (See 
related distributions, exponential distribution). 
 

𝑇𝑇~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 
Scaling property: 

𝑉𝑉𝑇𝑇~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑘𝑘,
𝜆𝜆
𝑉𝑉
� 

Convolution property: 
𝑇𝑇1 + 𝑇𝑇2 + … + 𝑇𝑇𝑛𝑛~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(∑𝑘𝑘𝑖𝑖 ,𝜆𝜆) 

Where 𝜆𝜆 is fixed. 
 
Properties from (Leemis & McQueston 2008) 

Applications 

Renewal Theory, Homogenous Poisson Process. Used to model 
a renewal process where the component time to failure is 
exponentially distributed and the component is replaced 
instantaneously with a new identical component. The HPP can also 
be used to model ruin theory (used in risk assessments) and queuing 
theory.  
 
System Failure. Can be used to model system failure with 𝑘𝑘 backup 
systems.  
 
Life Distribution. The gamma distribution is flexible in shape and 
can give good approximations to life data. 
 
Bayesian Analysis. The gamma distribution is often used as a prior 
in Bayesian analysis to produce closed form posteriors. 
 

Resources 

Online: 
http://mathworld.wolfram.com/GammaDistribution.html 
http://en.wikipedia.org/wiki/Gamma_distribution  
http://socr.ucla.edu/htmls/SOCR_Distributions.html (interactive web 
calculator) 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm  
 
Books: 
Artin, E., 1964. The Gamma Function, New York: Holt, Rinehart & 
Winston.   
 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1994. Continuous 
Univariate Distributions, Vol. 1 2nd ed., Wiley-Interscience.   
 
Bowman, K.O. & Shenton, L.R., 1988. Properties of estimators for 
the gamma distribution, CRC Press.   

Relationship to Other Distributions 

Generalized 
Gamma 
Distribution 

 

http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
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𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡;𝑘𝑘, 𝜆𝜆, γ, 𝜉𝜉) 𝑓𝑓(𝑡𝑡;𝑘𝑘,𝜆𝜆,𝛾𝛾, 𝜉𝜉) =

𝜉𝜉𝜆𝜆𝜉𝜉𝑘𝑘(𝑡𝑡 − 𝛾𝛾)𝜉𝜉𝑘𝑘−1

Γ(𝑘𝑘) exp{−[𝜆𝜆(𝑡𝑡 − 𝛾𝛾)]𝑘𝑘} 

𝜆𝜆 - Scale Parameter 
𝑘𝑘 - Shape Parameter  
𝛾𝛾 - Location parameter 
𝜉𝜉 - Second shape parameter 
 
The generalized gamma distribution has been derived because it is 
a generalization of a large amount of probability distributions. Such 
as: 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡; 1,𝜆𝜆, 0,1) = 𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡; 1,
1
𝜇𝜇 , β, 1� =  𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜇𝜇,𝛽𝛽) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡; 1,
1
𝛼𝛼

, 0,𝛽𝛽� = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡; 1,
1
𝛼𝛼 , γ,𝛽𝛽� = 𝑊𝑊𝑒𝑒𝑖𝑖𝑏𝑏𝑢𝑢𝑠𝑠𝑠𝑠(𝑡𝑡;𝛼𝛼,𝛽𝛽, 𝛾𝛾) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡;
𝑛𝑛
2 ,

1
2 , 0,1� = χ2(t; n) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡;
𝑛𝑛
2 ,

1
√2

, 0,2� = χ(t; n) 

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉 �𝑡𝑡; 1,
1
𝜎𝜎 , 0,2� = Rayleigh(t;σ) 

 

Exponential 
Distribution 
 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; λ) 

Let  
𝑇𝑇1 …𝑇𝑇𝑘𝑘~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)           𝑉𝑉𝑛𝑛𝑑𝑑           𝑇𝑇𝑡𝑡 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑘𝑘 

Then 
𝑇𝑇𝑡𝑡~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

 
This is gives the Gamma distribution its convolution property. 
 
 
Special Case: 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) = 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡;𝑘𝑘 = 1, 𝜆𝜆) 

Poisson 
Distribution 
 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘; 𝜆𝜆𝑡𝑡) 

Let  
𝑇𝑇1 …𝑇𝑇𝑘𝑘~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)           𝑉𝑉𝑛𝑛𝑑𝑑           𝑇𝑇𝑡𝑡 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑘𝑘 

Then 
𝑇𝑇𝑡𝑡~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

 
The Poisson distribution is the probability that exactly 𝑘𝑘 failures have 
been observed in time 𝑡𝑡. This is the probability that 𝑡𝑡 is between 𝑇𝑇𝑘𝑘 
and 𝑇𝑇𝑘𝑘+1. 
 

𝑓𝑓𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛(𝑘𝑘; 𝜆𝜆𝑡𝑡) = � 𝑓𝑓𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡; 𝑥𝑥, 𝜆𝜆)𝑑𝑑𝑥𝑥
𝑘𝑘+1

𝑘𝑘
 

= 𝐹𝐹𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡;𝑘𝑘 + 1, 𝜆𝜆) − 𝐹𝐹𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡; 𝑘𝑘, 𝜆𝜆) 
 
where 𝑘𝑘 is an integer. 
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Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎) 

Special Case for large k: 

lim
𝑘𝑘→∞

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇 =
𝑘𝑘
𝜆𝜆 ,𝜎𝜎 = �𝑘𝑘

𝜆𝜆2� 

Chi-square 
Distribution 
 

𝜒𝜒2(𝑡𝑡;𝐶𝐶) 

Special Case: 

𝜒𝜒2(𝑡𝑡; 𝐶𝐶) = 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑡𝑡; 𝑘𝑘 =
𝐶𝐶
2 ,𝜆𝜆 =

1
2) 

where 𝐶𝐶 is an integer 

Inverse Gamma 
Distribution 
 

𝐼𝐼𝐺𝐺(𝑡𝑡;𝛼𝛼, β) 

Let  

X~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆)           𝑉𝑉𝑛𝑛𝑑𝑑           Y =
1
X 

Then 
Y~I𝐺𝐺(𝛼𝛼 = 𝑘𝑘, β = λ) 

Beta Distribution 
 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡; α, β) 

Let  

𝑋𝑋1,𝑋𝑋2~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(ki, λi)           𝑉𝑉𝑛𝑛𝑑𝑑           Y =
X1

X1 + X2
 

Then 
Y~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼 = 𝑘𝑘1,𝛽𝛽 = 𝑘𝑘2) 

Dirichlet 
Distribution 
 

𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑(𝒙𝒙;𝛂𝛂) 

Let: 

𝑌𝑌𝑖𝑖~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆, 𝑘𝑘𝑖𝑖)   𝑖𝑖. 𝑖𝑖.𝑑𝑑  𝑉𝑉𝑛𝑛𝑑𝑑     𝑉𝑉 = �𝑌𝑌𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 

Then: 
𝑉𝑉~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆,∑𝑘𝑘𝑖𝑖) 

Let: 

𝒁𝒁 = �
𝑌𝑌1
𝑉𝑉 ,

𝑌𝑌2
𝑉𝑉 , … ,

𝑌𝑌𝑑𝑑
𝑉𝑉 � 

Then: 
𝒁𝒁~𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑(𝛼𝛼1, … ,𝛼𝛼𝑘𝑘) 

 
*i.i.d: independent and identically distributed 

Wishart 
Distribution 
 
𝑊𝑊𝑖𝑖𝑠𝑠ℎ𝑉𝑉𝑟𝑟𝑡𝑡𝑑𝑑(𝑛𝑛;𝚺𝚺) 

The Wishart Distribution is the multivariate generalization of the 
gamma distribution. 
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4.4. Logistic Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 
µ −∞ < 𝜇𝜇 < ∞ Location parameter. 𝜇𝜇 is the mean, 

median and mode of the distribution. 

𝑠𝑠 s > 0 Scale parameter. Proportional to the 
standard deviation of the distribution.  

Limits −∞ < t <  ∞ 
 

Distribution Formulas 

PDF 

𝑓𝑓(𝑡𝑡) =
ez

s(1 + ez)2 =
e−z

s(1 + e−z)2 

  

=
1

4𝑠𝑠
sech2 �

𝑡𝑡 − 𝜇𝜇
2𝑠𝑠 � 

where 

𝑧𝑧 =
𝑡𝑡 − 𝜇𝜇
𝑠𝑠  

CDF 
𝐹𝐹(𝑡𝑡) =

1
1 + e−z =

ez

1 + ez 
  

=
1
2 +

1
2 tanh �

𝑡𝑡 − 𝜇𝜇
2𝑠𝑠 � 

Reliability R(t) =
1

1 + ez 
 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

1 + exp �𝑡𝑡 − 𝜇𝜇
𝑠𝑠 �

1 + exp �𝑡𝑡 + 𝑥𝑥 − 𝜇𝜇
𝑠𝑠 �

 

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) = (1 + 𝑒𝑒z) �s. ln �𝑒𝑒t s� + 𝑒𝑒

𝜇𝜇
𝑠𝑠� � − t� 

Hazard Rate 

ℎ(𝑡𝑡) =
1

s(1 + e−z) =
𝐹𝐹(𝑡𝑡)
𝑠𝑠  

=
1

s + s exp �𝜇𝜇 − 𝑡𝑡
𝑠𝑠 �

 

 

Cumulative 
Hazard Rate 

𝐻𝐻(𝑡𝑡) = ln �1 + exp �
𝑡𝑡 − 𝜇𝜇
𝑠𝑠 ��  
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Properties and Moments 

Median µ  

Mode µ 

Mean - 1st Raw Moment µ 

Variance - 2nd Central Moment π2

3 s2 

Skewness - 3rd Central Moment 0 

Excess kurtosis - 4th Central Moment 6
5 

Characteristic Function 𝑒𝑒𝑖𝑖𝜇𝜇𝑡𝑡𝐵𝐵(1 − 𝑖𝑖𝑠𝑠𝑡𝑡, 1 + 𝑖𝑖𝑠𝑠𝑡𝑡)  for |𝑠𝑠𝑡𝑡| < 1   

100𝛾𝛾 % Percentile Function 𝑡𝑡𝛾𝛾 = 𝜇𝜇 + 𝑠𝑠 ln �
𝛾𝛾

1 − 𝛾𝛾� 

Parameter Estimation 

Plotting Method 

Least Mean 
Square      
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis �̂�𝑠 =
1
m 

 
�̂�𝜇 = −𝑐𝑐�̂�𝑠 

ti ln[F] − ln[1 − 𝐹𝐹] 

Maximum Likelihood Function 

Likelihood 
Function 

For complete data: 

𝐿𝐿(𝜇𝜇, 𝑠𝑠|𝐸𝐸) = �
exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇

−𝑠𝑠 �

s �1 + exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇
−𝑠𝑠 ��

2

nF

i=1�����������������
failures

 

 

Log-Likelihood 
Function Λ(𝜇𝜇, 𝑠𝑠|𝐸𝐸) = −nF ln s + ��

𝑡𝑡𝑖𝑖 − 𝜇𝜇
−𝑠𝑠 �

𝑛𝑛𝐹𝐹

𝑖𝑖=1

− 2� ln �1 + exp �
𝑡𝑡𝑖𝑖 − 𝜇𝜇
−𝑠𝑠 ��

𝑛𝑛𝐹𝐹

𝑖𝑖=1���������������������������������
failures

 

∂Λ
∂µ = 0 ∂Λ

∂µ =
nF
s −

2
𝑠𝑠�

1

�1 + exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 ��

𝑛𝑛𝐹𝐹

𝑖𝑖=1�������������������
failures

= 0 

 

∂Λ
∂s = 0 ∂Λ

∂s = −
nF
s −

1
𝑠𝑠��

𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 �

𝑛𝑛𝐹𝐹

𝑖𝑖=1

�
1 − exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇

𝑠𝑠 �

1 + exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 �

�
���������������������������

failures

= 0 

 



  Logistic Continuous Distribution  111        
Logistic 

MLE Point 
Estimates 

The MLE estimates for �̂�𝜇 and �̂�𝑠 are found by solving the following 
equations: 

1
2
−

1
nF
��1 + exp �

𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠

��
−1

𝑛𝑛𝐹𝐹

𝑖𝑖=1

= 0 

1 +
1

nF
��

𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 �

1 − exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 �

1 + exp �𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝑠𝑠 �

𝑛𝑛𝐹𝐹

𝑖𝑖=1

= 0 

 
These estimates are biased. (Balakrishnan 1991) provides tables 
derived from Monte Carlo simulation to correct the bias.  

Fisher 
Information 

𝐼𝐼(𝜇𝜇, 𝑠𝑠) = �

1
3𝑠𝑠2 0

0
𝜋𝜋2 + 3

9𝑠𝑠2

� 

(Antle et al. 1970) 

100𝛾𝛾% 
Confidence 
Intervals  

Confidence intervals are most often obtained from tables derived from 
Monte Carlo simulation. Corrections from using the Fisher Information 
matrix method are given in (Antle et al. 1970). 

Bayesian 

Non-informative Priors  𝝅𝝅𝟎𝟎(𝝁𝝁, 𝑾𝑾)  

Type Prior 

Jeffery Prior 1
𝑠𝑠 

Description , Limitations and Uses 

Example The accuracy of a cutting machine used in manufacturing is desired 
to be measured. 5 cuts at the required length are made and 
measured as: 

7.436, 10.270, 10.466, 11.039, 11.854 𝑚𝑚𝑚𝑚 
 
Numerically solving MLE equations gives: 

�̂�𝜇 = 10.446 
      �̂�𝑠 = 0.815 

 
This gives a mean of 10.446 and a variance of 2.183. Compared to 
the same data used in the Normal distribution section it can be seen 
that this estimate is very similar to a normal distribution.  
 
90% confidence interval for 𝜇𝜇: 

��̂�𝜇 − Φ−1(0.95)�
3�̂�𝑠2

𝑛𝑛𝐹𝐹
, �̂�𝜇 + Φ−1(0.95)�

3�̂�𝑠2

𝑛𝑛𝐹𝐹
�  

[9.408,    11.4844]  
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90% confidence interval for 𝑠𝑠: 

⎣
⎢
⎢
⎢
⎢
⎡

�̂�𝑠. exp

⎩
⎪
⎨

⎪
⎧𝛷𝛷−1(0.95)� 9�̂�𝑠2

𝑛𝑛𝐹𝐹(3 + 𝜋𝜋2)

−�̂�𝑠

⎭
⎪
⎬

⎪
⎫

, �̂�𝑠. exp

⎩
⎪
⎨

⎪
⎧𝛷𝛷−1(0.95)� 9�̂�𝑠2

𝑛𝑛𝐹𝐹(3 + 𝜋𝜋2)

�̂�𝑠

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎤

  

[0.441,   1.501]  
 
Note that this confidence interval uses the assumption of the 
parameters being normally distributed which is only true for large 
sample sizes. Therefore these confidence intervals may be 
inaccurate. 
 
Bayesian methods must be calculated using numerical methods.  
 

Characteristics  The logistic distribution is most often used to model growth rates (and 
has been used extensively in biology and chemical applications). In 
reliability engineering it is most often used as a life distribution.  
 
Shape. There is no shape parameter and so the logistic distribution 
is always a bell shaped curve. Increasing 𝜇𝜇 shifts the curve to the 
right, increasing  𝑠𝑠 increases the spread of the curve. 
 
Normal Distribution. The shape of the logistic distribution is very 
similar to that of a normal distribution with the logistic distribution 
having slightly ‘longer tails’. It would take a large number of samples 
to distinguish between the distributions. The main difference is that 
the hazard rate approaches 1/𝑠𝑠  for large 𝑡𝑡. The logistic function has 
historically been preferred over the normal distribution because of its 
simplified form.  (Meeker & Escobar 1998, p.89) 
 
Alternative Parameterization. It is equally as popular to present the 
logistic distribution using the true standard deviation 𝜎𝜎 = 𝜋𝜋𝑠𝑠 √3⁄ . This 
form is used in reference book, Balakrishnan 1991, and gives the 
following cdf: 
 

𝐹𝐹(𝑡𝑡) =
1

1 + exp �−𝜋𝜋
√3

�𝑡𝑡 − 𝜇𝜇
𝜎𝜎 ��

 

 
Standard Logistic Distribution. The standard logistic distribution 
has 𝜇𝜇 = 0, 𝑠𝑠 = 1. The standard logistic distribution random variable, 
𝑍𝑍,  is related to the logistic distribution: 
 

𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝑠𝑠  

 
 
 



  Logistic Continuous Distribution  113        
Logistic 

Let: 
𝑇𝑇~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(𝑡𝑡; 𝜇𝜇, 𝑠𝑠) 

 
Scaling property (Leemis & McQueston 2008) 

𝑉𝑉𝑇𝑇~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(𝑡𝑡; 𝜇𝜇, 𝑉𝑉𝑠𝑠) 
 
Rate Relationships. The distribution has the following rate 
relationships which make it suitable for modeling growth (Hastings et 
al. 2000, p.127): 
 

ℎ(𝑡𝑡) =
f(t)
R(t) =

𝐹𝐹(𝑡𝑡)
𝑠𝑠  

 

𝑧𝑧 = ln �
𝐹𝐹(𝑡𝑡)
𝑅𝑅(𝑡𝑡)� = ln[𝐹𝐹(𝑡𝑡)]− ln[1 − 𝐹𝐹(𝑡𝑡)] 

where 

𝑧𝑧 =
𝑡𝑡 − 𝜇𝜇
𝑠𝑠  

when 𝜇𝜇 = 0 and 𝑠𝑠 = 1: 
 

𝑓𝑓(𝑡𝑡) =
𝑑𝑑𝐹𝐹(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝐹𝐹(𝑡𝑡)𝑅𝑅(𝑡𝑡) 

 

Applications Growth Model. The logistic distribution most common use is a 
growth model. 
 
Probability of Detection. The cdf of logistic distribution is commonly 
used to represent the probability of detection damaged materials 
sensors and detection instruments. For example probability of 
detection of embedded flaws in metals using ultrasonic signals. 
 
Life Distribution. In reliability applications it is used as a life 
distribution. It is similar in shape to a normal distribution and so is 
often used instead of a normal distribution due to its simplified form. 
(Meeker & Escobar 1998, p.89)  
 
Logistic Regression. Logistic regression is a generalized linear 
regression model used predict binary outcomes. (Agresti 2002) 
 

Resources Online: 
http://mathworld.wolfram.com/LogisticDistribution.html 
http://en.wikipedia.org/wiki/Logistic_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
http://www.weibull.com/LifeDataWeb/the_logistic_distribution.htm  
 
Books: 
Balakrishnan, 1991. Handbook of the Logistic Distribution 1st ed., 
CRC.   
 

http://mathworld.wolfram.com/LogisticDistribution.html
http://en.wikipedia.org/wiki/Logistic_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
http://www.weibull.com/LifeDataWeb/the_logistic_distribution.htm
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Johnson, N.L., Kotz, S. & Balakrishnan, N., 1995. Continuous 
Univariate Distributions, Vol. 2 2nd ed., Wiley-Interscience.   

Relationship to Other Distributions 

Exponential 
Distribution 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Let  

𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆 = 1)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = ln �
𝑒𝑒−𝑋𝑋

1 + 𝑒𝑒−𝑋𝑋� 

Then 
𝑌𝑌~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(0,1) 

(Hastings et al. 2000, p.127) 

Pareto 
Distribution 

𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼) 

Let   

𝑋𝑋~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼)         𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = − ln ��
X
θ�

α
− 1� 

Then 
𝑌𝑌~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(0,1) 

(Hastings et al. 2000, p.127) 

Gumbel 
Distribution 
𝐺𝐺𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑠𝑠(𝛼𝛼 ,𝛽𝛽) 

Let   
𝑋𝑋𝑖𝑖~𝐺𝐺𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑠𝑠(𝛼𝛼 ,𝛽𝛽)         𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = X1 − X2 

Then 
𝑌𝑌~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(0,𝛽𝛽) 

(Hastings et al. 2000, p.127) 
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4.5. Normal (Gaussian) Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 
𝜇𝜇 −∞ < µ <  ∞ Location parameter: The mean of the 

distribution.  

𝜎𝜎2 σ2 > 0 Scale parameter: The standard 
deviation of the distribution. 

Limits −∞ < t <  ∞ 

Distribution  Formulas 

PDF 

𝑓𝑓(𝑡𝑡) =
1

σ√2𝜋𝜋
exp � −

1
2 �

t − µ
σ �

2
� 

=
1
σ𝜙𝜙 �

𝑡𝑡 − µ
σ � 

 
where 𝜙𝜙 is the standard normal pdf with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1. 

CDF 

𝐹𝐹(𝑡𝑡) =
1

σ√2𝜋𝜋
� exp � −

1
2 �
θ − µ
σ �

2

�
𝑡𝑡

−∞
𝑑𝑑𝜃𝜃 

 

=
1
2 +

1
2 erf �

𝑡𝑡 − µ
σ√2

� 

 

= Φ�
t − µ
σ

� 

 
where Φ is the standard normal cdf with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1. 

Reliability 
R(t) = 1 −Φ�

t − µ
σ � 

= Φ�
µ − t
σ � 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

Φ�µ − x − t
σ �

Φ �µ − t
σ �

 

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) =

∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡) =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡)  

Hazard Rate ℎ(𝑡𝑡) =
𝜙𝜙 �t − µ

σ �

𝜎𝜎 �Φ �µ − t
σ ��

 

 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = − ln �𝛷𝛷 �

𝜇𝜇 − 𝑡𝑡
𝜎𝜎 �� 
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Properties and Moments 

Median µ  

Mode µ 

Mean - 1st Raw Moment µ 

Variance - 2nd Central Moment σ2 

Skewness - 3rd Central Moment 0 

Excess kurtosis - 4th Central Moment 0 

Characteristic Function exp �𝑖𝑖𝜇𝜇𝑡𝑡 − 1
2
𝜎𝜎2𝑡𝑡2� 

100𝛼𝛼% Percentile Function 𝑡𝑡𝛼𝛼 = µ + σΦ−1(α) 
= µ + σ√2 erf−1(2𝛼𝛼 − 1) 

Parameter Estimation 

Plotting Method 

Least Mean 
Square      
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis µ� = −
𝑐𝑐
𝑚𝑚 

 

σ� =
1
𝑚𝑚 ,   σ2� =

1
𝑚𝑚2 

𝑡𝑡𝑖𝑖 𝑖𝑖𝑛𝑛𝐶𝐶𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚[𝐹𝐹(𝑡𝑡𝑖𝑖)] 

Maximum Likelihood Function 

Likelihood 
Function 

For complete data: 

𝐿𝐿(𝜇𝜇,𝜎𝜎|𝐸𝐸) =
1

�σ√2π�
nF� exp�−

1
2 �
𝑡𝑡𝑖𝑖 − 𝜇𝜇
𝜎𝜎 �

2
�

nF

i=1�������������������������
failures

 

=
1

�σ√2π�
nF exp�−

1
2𝜎𝜎2�

(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

�
�������������������������

failures

 

Log-Likelihood 
Function Λ(𝜇𝜇,𝜎𝜎|𝐸𝐸) = −nF ln�σ√2π� −

1
2𝜎𝜎2�

(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1�����������������������
failures

 

∂Λ
∂µ = 0 

solve for 𝜇𝜇 to get MLE �̂�𝜇: 
∂Λ
∂µ =

𝜇𝜇𝑛𝑛𝐹𝐹
𝜎𝜎2 −

1
𝜎𝜎2�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1�����������
failures

= 0 

∂Λ
∂σ = 0 

solve for 𝜎𝜎 to get 𝜎𝜎�: 
∂Λ
∂σ = −

nF
σ +

1
𝜎𝜎3�

(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1���������������
failures

= 0 
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MLE Point 
Estimates 

When there is only complete failure data the point estimates can be 
given as: 

�̂�𝜇 =
1

nF
�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

      𝜎𝜎2� =
1

nF
�(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

 
In most cases the unbiased estimators are used: 
 

�̂�𝜇 =
1

nF
�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

      𝜎𝜎2� =
1

nF − 1�
(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2

𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

 

Fisher 
Information 𝐼𝐼(𝜇𝜇,𝜎𝜎2) = �1/𝜎𝜎2 0

0 −1/2𝜎𝜎4
� 

100𝛾𝛾% 
Confidence 
Intervals  
 
(for complete 
data) 

 1 Sided - Lower 2 Sided - Lower 2 Sided - Upper 

𝝁𝝁  �̂�𝜇 −
𝜎𝜎�
√𝑛𝑛

𝑡𝑡γ(n − 1) �̂�𝜇 −
𝜎𝜎�
√𝑛𝑛

𝑡𝑡�1+γ2 �(n− 1) �̂�𝜇 +
𝜎𝜎�
√𝑛𝑛

𝑡𝑡�1+γ2 �(n− 1) 

𝝈𝝈𝝈𝝈  𝜎𝜎2�
(𝑛𝑛 − 1)
𝜒𝜒𝛼𝛼2(𝑛𝑛 − 1)

 𝜎𝜎2�
(𝑛𝑛 − 1)

𝜒𝜒
�1+γ

2 �
2 (𝑛𝑛 − 1)

 𝜎𝜎2�
(𝑛𝑛 − 1)

𝜒𝜒
�1−γ

2 �
2 (𝑛𝑛 − 1)

 

(Nelson 1982, pp.218-220) Where   𝑡𝑡γ(n − 1) is the 100𝛾𝛾th  percentile of 
the t-distribution with 𝑛𝑛 − 1 degrees of freedom and 𝜒𝜒𝛾𝛾2(𝑛𝑛 − 1) is the 
100𝛾𝛾th  percentile of the 𝜒𝜒2-distribution with 𝑛𝑛 − 1 degrees of freedom. 
 

Bayesian 

Non-informative Priors when 𝝈𝝈𝝈𝝈 is known,  𝝅𝝅𝟎𝟎(𝝁𝝁)  
 (Yang and Berger 1998, p.22) 

Type Prior Posterior 

Uniform Proper 
Prior with limits  

𝜇𝜇 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Normal Distribution 

For a ≤ µ ≤ b 

𝑐𝑐.𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µ;
∑ 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝑛𝑛𝐹𝐹

,
σ2

nF
� 

Otherwise  𝜋𝜋(𝜇𝜇) = 0 

All 1 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µ;

∑ 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝑛𝑛𝐹𝐹

,
σ2

nF
� 

when 𝜇𝜇 ∈ (∞,∞) 

Non-informative Priors when 𝝁𝝁 is known,  𝝅𝝅𝑯𝑯(𝝈𝝈𝝈𝝈)  
 (Yang and Berger 1998, p.23) 

Type Prior Posterior 

Uniform Proper 
Prior with limits  

𝜎𝜎2 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Inverse Gamma Distribution 

For a ≤ σ2 ≤ b 
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𝑐𝑐. 𝐼𝐼𝐺𝐺 �σ2;  

(𝑛𝑛𝐹𝐹 − 2)
2 ,

S2

2 � 

Otherwise  𝜋𝜋(𝜎𝜎2) = 0 

Uniform Improper 
Prior with limits  

𝜎𝜎2 ∈ (0,∞) 

1 
𝐼𝐼𝐺𝐺 �σ2;

(𝑛𝑛𝐹𝐹 − 2)
2 ,

S2

2 � 

See section 1.7.1 

Jeffery’s, 
Reference, MDIP 
Prior 

1
𝜎𝜎2 

 
𝐼𝐼𝐺𝐺 �σ2;

𝑛𝑛𝐹𝐹
2 ,

S2

2 � 

with limits 𝜎𝜎2 ∈ (0,∞) 
See section 1.7.1 

Non-informative Priors when 𝝁𝝁 and 𝝈𝝈𝝈𝝈 are unknown,  𝝅𝝅𝑯𝑯(𝝁𝝁,𝝈𝝈𝝈𝝈)  
 (Yang and Berger 1998, p.23) 

Type Prior Posterior 

Improper Uniform 
with limits: 

𝜇𝜇 ∈ (∞,∞) 
𝜎𝜎2 ∈ (0,∞) 

1 
𝜋𝜋(𝜇𝜇|𝐸𝐸)~𝑇𝑇 �µ; nF − 3, 𝑡𝑡̅,

S2

nF(nF − 3)� 

See section 1.7.2 

𝜋𝜋(𝜎𝜎2|𝐸𝐸)~𝐼𝐼𝐺𝐺 �σ2;
(𝑛𝑛𝐹𝐹 − 3)

2 ,
S2

2 � 

See section 1.7.1 

Jeffery’s Prior 1
𝜎𝜎4 

 
𝜋𝜋(𝜇𝜇|𝐸𝐸)~𝑇𝑇 �µ; nF + 1, 𝑡𝑡̅,

S2

nF(nF + 1)� 

when 𝜇𝜇 ∈ (∞,∞) 
See section 1.7.2 

𝜋𝜋(𝜎𝜎2|𝐸𝐸)~𝐼𝐼𝐺𝐺 �σ2;
(𝑛𝑛𝐹𝐹 + 1)

2
,
S2

2 � 

when 𝜎𝜎2 ∈ (0,∞) 
See section 1.7.1 

Reference Prior 
ordering  {𝜙𝜙,𝜎𝜎} 

𝜋𝜋𝑜𝑜(𝜙𝜙,𝜎𝜎2)

∝
1

𝜎𝜎�2 + 𝜙𝜙2
 

where 
𝜙𝜙 = 𝜇𝜇/𝜎𝜎 

No Closed Form 

Reference where  
𝜇𝜇 and 𝜎𝜎2 are 
separate groups. 
 
MDIP Prior 

1
𝜎𝜎2 

 
𝜋𝜋(𝜇𝜇|𝐸𝐸)~𝑇𝑇 �µ; nF − 1, 𝑡𝑡̅,

S2

nF(nF − 1)� 

when 𝜇𝜇 ∈ (∞,∞) 
See section 1.7.2 

𝜋𝜋(𝜎𝜎2|𝐸𝐸)~𝐼𝐼𝐺𝐺 �σ2;
(𝑛𝑛𝐹𝐹 − 1)

2 ,
S2

2 � 

when 𝜎𝜎2 ∈ (0,∞) 
See section 1.7.1 
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where 

𝑆𝑆2 = �(𝑡𝑡𝑖𝑖 − 𝑡𝑡̅)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

        and         𝑡𝑡̅ =
1

nF
�𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior Parameters 

𝜇𝜇 
from 

𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎2) 

Normal 
with known 

𝜎𝜎2 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Normal u𝑜𝑜 , 𝐶𝐶0 

𝑢𝑢 =

𝑢𝑢0
𝐶𝐶0

+
∑ 𝑡𝑡𝑖𝑖𝐹𝐹
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝜎𝜎2

1
𝐶𝐶0

+ 𝑛𝑛𝐹𝐹
𝜎𝜎2

 

 

𝐶𝐶 =
1

1
𝐶𝐶0

+ nF
𝜎𝜎2

 

𝜎𝜎2 
from 

𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎2) 

Normal 
with known 

𝜇𝜇 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Gamma 𝑘𝑘0, 𝜆𝜆0 

𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹/2 
 

𝜆𝜆 = 𝜆𝜆𝑜𝑜 +
1
2�

(𝑡𝑡𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1  

𝜇𝜇𝑁𝑁 
from 

𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝑡𝑡; 𝜇𝜇𝑁𝑁,𝜎𝜎𝑁𝑁2) 

Lognormal 
with known 

𝜎𝜎𝑁𝑁2 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Normal 𝑢𝑢𝑜𝑜, 𝐶𝐶0 

𝑢𝑢 =

u0
σ02

+
∑ ln (𝑡𝑡𝑖𝑖)
𝑛𝑛𝐹𝐹
𝑖𝑖=1
𝜎𝜎𝑁𝑁2

1
𝐶𝐶2 + 𝑛𝑛𝐹𝐹

𝜎𝜎𝑁𝑁2
 

 

𝐶𝐶 =
1

1
𝐶𝐶2 + 𝑛𝑛𝐹𝐹

𝜎𝜎𝑁𝑁2
 

Description , Limitations and Uses 

Example The accuracy of a cutting machine used in manufacturing is desired 
to be measured. 5 cuts at the required length are made and 
measured as: 

7.436, 10.270, 10.466, 11.039, 11.854 𝑚𝑚𝑚𝑚 
 
MLE Estimates are: 

�̂�𝜇 =
∑𝑡𝑡𝑖𝑖𝐹𝐹

nF
= 10.213 

      𝜎𝜎2� =
∑�𝑡𝑡𝑖𝑖𝐹𝐹 − 𝜇𝜇𝑡𝑡� �

2

nF − 1 = 2.789 

 
90% confidence interval for 𝜇𝜇: 

��̂�𝜇 −
𝜎𝜎�
√5

𝑡𝑡{0.95}(4), �̂�𝜇 +
𝜎𝜎�
√5

𝑡𝑡{0.95}(4)�  

[10.163,   10.262]  
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90% confidence interval for 𝜎𝜎2: 

�𝜎𝜎2�
4

𝜒𝜒{0.95}
2 (4)

, 𝜎𝜎2�
4

𝜒𝜒{0.05}
2 (4)

�  

[1.176,   15.697]  
 
A Bayesian point estimate using the Jeffery non-informative improper 
prior 1 𝜎𝜎4⁄  with posterior for  𝜇𝜇~𝑇𝑇(6, 10.213, 0.558 ) and 𝜎𝜎2~𝐼𝐼𝐺𝐺(3,
5.578)  has a point estimates: 
 

�̂�𝜇 = E[𝑇𝑇(6,6.595,0.412 )] = µ = 10.213 
 

𝜎𝜎2� = E[𝐼𝐼𝐺𝐺(3,5.578)] =
5.578

2 = 2.789 
 
With 90% confidence intervals: 
𝜇𝜇  

[𝐹𝐹𝑇𝑇−1(0.05) = 8.761, 𝐹𝐹𝑇𝑇−1(0.95) = 11.665]  
𝜎𝜎2  

[1/𝐹𝐹𝐺𝐺−1(0.95) = 0.886, 1/𝐹𝐹𝐺𝐺−1(0.05) = 6.822] 
 

Characteristics  Also known as a Gaussian distribution or bell curve.  
 
Unit Normal Distribution. Also known as the standard normal 
distribution is when 𝜇𝜇 = 0 and 𝜎𝜎 = 1 with pdf 𝜙𝜙(𝑧𝑧) and cdf Φ(z). If X 
is normally distributed with mean 𝜇𝜇 and standard deviation 𝜎𝜎 then the 
following transformation is used: 

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎  

 
Central Limit Theorem. Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛be a sequence of 𝑛𝑛 
independent and identically distributed (i.i.d) random variables each 
having a mean of 𝜇𝜇 and a variance of 𝜎𝜎2. As the sample size 
increases, the distribution of the sample average of these random 
variables approaches the normal distribution with mean 𝜇𝜇 and 
variance 𝜎𝜎2/𝑛𝑛 irrespective of the shape of the original distribution. 
Formally: 

𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 
 
If we define a new random variables: 

𝑍𝑍𝑛𝑛 =
𝑆𝑆𝑛𝑛 − 𝑛𝑛𝜇𝜇
𝜎𝜎√𝑛𝑛

,   𝑉𝑉𝑛𝑛𝑑𝑑     𝑌𝑌 =
𝑆𝑆𝑛𝑛
𝑛𝑛  

 
The distribution of 𝑍𝑍𝑛𝑛converges to the standard normal distribution. 
The distribution of 𝑆𝑆𝑛𝑛 converges to a normal distribution with mean 𝜇𝜇 
and standard deviation of 𝜎𝜎/√𝑛𝑛. 
 
Sigma Intervals. Often intervals of the normal distribution are 
expressed in terms of distance away from the mean in units of sigma. 
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The following is approximate values for each sigma: 
 

Interval 𝚽𝚽(𝝁𝝁 + 𝒏𝒏𝝈𝝈) −𝚽𝚽(𝝁𝝁 − 𝒏𝒏𝝈𝝈) 
𝜇𝜇 ± 𝜎𝜎  68.2689492137% 
𝜇𝜇 ± 2𝜎𝜎 95.4499736104% 
𝜇𝜇 ± 3𝜎𝜎 99.7300203937% 
𝜇𝜇 ± 4𝜎𝜎 99.9936657516% 
𝜇𝜇 ± 5𝜎𝜎 99.9999426697% 
𝜇𝜇 ± 6𝜎𝜎 99.9999998027% 

 
Truncated Normal. Often in reliability engineering a truncated 
normal distribution may be used due to the limitation that 𝑡𝑡 ≥ 0. See 
Truncated Normal Continuous Distribution.  
 
Inflection Points: 
Inflection points occur one standard deviation away from the mean 
(𝜇𝜇 ± 𝜎𝜎). 
 
Mean / Median / Mode: 
The mean, median and mode are always equal to 𝜇𝜇. 
 
Hazard Rate. The hazard rate is increasing for all 𝑡𝑡. The Standard 
Normal Distribution’s hazard rate approaches ℎ(𝑡𝑡) = 𝑡𝑡 as 𝑡𝑡 becomes 
large.  
 
Let: 

X~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(µ,σ2) 
Convolution Property 

�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚��𝜇𝜇𝑖𝑖 ,∑𝜎𝜎𝑖𝑖2� 

Scaling Property 
 

𝑉𝑉𝑋𝑋 + 𝑏𝑏~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑉𝑉𝜇𝜇 + 𝑏𝑏, 𝑉𝑉2𝜎𝜎2) 
Linear Combination Property: 

�𝑉𝑉𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚��{𝑉𝑉𝑖𝑖𝜇𝜇𝑖𝑖 + 𝑏𝑏𝑖𝑖} ,∑�𝑉𝑉𝑖𝑖2𝜎𝜎𝑖𝑖2�� 

 

Applications Approximations to Other Distributions. The origin of the Normal 
Distribution was from an approximation of the Binomial distribution. 
Due to the Central Limit Theory the Normal distribution can be used 
to approximate many distributions as detailed under ‘Related 
Distributions’. 
 
Strength Stress Interference. When the strength of a component 
follows a distribution and the stress that component is subjected to 
follows a distribution there exists a probability that the stress will be 
greater than the strength. When both distributions are a normal 
distribution, there is a closed for solution to the interference 
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probability. 
 
Life Distribution. When used as a life distribution a truncated 
Normal Distribution may be used due to the constraint 𝑡𝑡 ≥ 0. 
However it is often found that the difference in results is negligible. 
(Rausand & Høyland 2004) 
 
Time Distributions. The normal distribution may be used to model 
simple repair or inspection tasks that have a typical duration with 
variation which is symmetrical about the mean. This is typical for 
inspection and preventative maintenance times.  
 
Analysis of Variance (ANOVA). A test used to analyze variance 
and dependence of variables. A popular model used to conduct 
ANOVA assumes the data comes from a normal population. 
 
Six Sigma Quality Management. Six sigma is a business 
management strategy which aims to reduce costs in manufacturing 
processes by removing variance in quality (defects). Current 
manufacturing standards aim for an expected 3.4 defects out of one 
million parts: 2Φ(−6). (Six Sigma Academy 2009) 

Resources Online: 
http://www.weibull.com/LifeDataWeb/the_normal_distribution.htm 
http://mathworld.wolfram.com/NormalDistribution.html 
http://en.wikipedia.org/wiki/Normal_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Patel, J.K. & Read, C.B., 1996. Handbook of the Normal Distribution 
2nd ed., CRC.   
 
Simon, M.K., 2006. Probability Distributions Involving Gaussian 
Random Variables: A Handbook for Engineers and Scientists, 
Springer.   
 

Relationship to Other Distributions 

Truncated Normal 
Distribution 
 
𝑇𝑇𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑥𝑥; 𝜇𝜇,𝜎𝜎, 𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈) 

Let: 
𝑋𝑋~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2) 
𝑋𝑋 ∈ (∞,∞) 

Then: 
𝑌𝑌~T𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2,𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈) 

𝑌𝑌 ∈ [𝑉𝑉𝐿𝐿,𝑏𝑏𝑈𝑈] 

Lognormal 
Distribution 
 
𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝑡𝑡;𝜇𝜇𝑁𝑁 ,𝜎𝜎𝑁𝑁2) 

Let: 
𝑋𝑋~𝐿𝐿𝐶𝐶𝑅𝑅𝑁𝑁(𝜇𝜇𝑁𝑁 ,σN2 ) 

𝑌𝑌 = ln (𝑋𝑋) 
Then: 

𝑌𝑌~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2) 
Where: 

http://www.weibull.com/LifeDataWeb/the_normal_distribution.htm
http://mathworld.wolfram.com/NormalDistribution.html
http://en.wikipedia.org/wiki/Normal_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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𝜇𝜇𝑁𝑁 = ln �
𝜇𝜇2

�𝜎𝜎2 + 𝜇𝜇2
�  ,       𝜎𝜎𝑁𝑁 = �ln �

𝜎𝜎2 + 𝜇𝜇2

𝜇𝜇2 � 

Rayleigh 
Distribution 
 
𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝑡𝑡;𝜎𝜎) 

Let  

𝑋𝑋1,𝑋𝑋2~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(0,σ)           𝑉𝑉𝑛𝑛𝑑𝑑           Y = �X12 + X22 

Then 
Y~𝑅𝑅𝑉𝑉𝑦𝑦𝑠𝑠𝑒𝑒𝑖𝑖𝑅𝑅ℎ(𝜎𝜎) 

Chi-square 
Distribution 
 

𝜒𝜒2(𝑡𝑡;𝐶𝐶) 

Let  

𝑋𝑋𝑖𝑖~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(µ,σ2)           𝑉𝑉𝑛𝑛𝑑𝑑           Y = ��
Xk − µ
σ �

2v

k=1

 

Then 
Y~𝜒𝜒2(𝑡𝑡; 𝐶𝐶) 

Binomial 
Distribution 
 
𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛, 𝑝𝑝) 

Limiting Case for constant 𝑝𝑝: 
lim𝑛𝑛→∞
𝑝𝑝=𝑝𝑝

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛, 𝑝𝑝) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�k; µ = n𝑝𝑝,𝜎𝜎2 = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)� 

 
The Normal distribution can be used as an approximation of the 
Binomial distribution when 𝑛𝑛𝑝𝑝 ≥ 10 and 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) ≥ 10. 
 

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘; 𝑝𝑝,𝑛𝑛) ≈ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝑡𝑡 = 𝑘𝑘 + 0.5;  𝜇𝜇 = 𝑛𝑛𝑝𝑝,𝜎𝜎2 = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)� 

Poisson 
Distribution 
 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k;µ) 

lim
𝜇𝜇→∞

𝐹𝐹𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠(𝑘𝑘;𝜇𝜇) = 𝐹𝐹𝑁𝑁𝑜𝑜𝑟𝑟𝑚𝑚(𝑘𝑘;𝜇𝜇′ = 𝜇𝜇,𝜎𝜎 = �𝜇𝜇) 

 
This is a good approximation when 𝜇𝜇 > 1000. When 𝜇𝜇 > 10 the same 
approximation can be made with a correction: 
 

lim
𝜇𝜇→∞

𝐹𝐹𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠(𝑘𝑘;𝜇𝜇) = 𝐹𝐹𝑁𝑁𝑜𝑜𝑟𝑟𝑚𝑚(𝑘𝑘;𝜇𝜇′ = 𝜇𝜇 − 0.5,𝜎𝜎 = �𝜇𝜇) 

 

Beta Distribution 
 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡;𝛼𝛼,𝛽𝛽) 

For large 𝛼𝛼 and 𝛽𝛽 with fixed 𝛼𝛼/𝛽𝛽: 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼,𝛽𝛽) ≈ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�µ =
α

α + β ,𝜎𝜎 = �
αβ

(α + β)2(α + β + 1)� 

 
As 𝛼𝛼 and 𝛽𝛽 increase the mean remains constant and the variance is 
reduced. 
 

Gamma 
Distribution 
 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

Special Case for large k: 

lim
𝑘𝑘→∞

𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇 =
𝑘𝑘
𝜆𝜆 ,𝜎𝜎 = �𝑘𝑘

𝜆𝜆2� 
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4.6. Pareto Continuous Distribution 
 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 
θ θ > 0 

Location parameter. θ is the lower 
limit of t. Sometimes refered to as t-
minimum.  

𝛼𝛼 α > 0 Shape parameter. Sometimes called 
the Pareto index.  

Limits θ ≤ t <  ∞ 
 

Distribution Formulas 

PDF 𝑓𝑓(𝑡𝑡) =
αθα

tα+1 

CDF 𝐹𝐹(𝑡𝑡) = 1 − �
θ
t�

α

 

Reliability R(t) = �
θ
t�

α

 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) =

(t)α

(t + x)α 

Where  
𝑡𝑡 is the given time we know the component has survived to time 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 𝑢𝑢(𝑡𝑡) =

∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡)  

Hazard Rate ℎ(𝑡𝑡) =
α
t  

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = 𝛼𝛼 ln �

𝑡𝑡
𝜃𝜃�  

Properties and Moments 

Median θ21 α⁄   

Mode θ 

Mean - 1st Raw Moment αθ
α − 1 ,  for   α > 1 

Variance - 2nd Central Moment αθ2

(α − 1)2(α − 2) ,  for   α > 2 

Skewness - 3rd Central Moment 2(1 + α)
(α − 3)

�α − 2
α ,  for   α > 3 
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Excess kurtosis - 4th Central Moment 6(α3 + α2 − 6α − 2)
α(α − 3)(α − 4) ,  for   α > 4 

Characteristic Function 𝛼𝛼(−𝑖𝑖𝜃𝜃𝑡𝑡)𝛼𝛼Γ(−𝛼𝛼,−𝑖𝑖𝜃𝜃𝑡𝑡) 

100𝛾𝛾 % Percentile Function 𝑡𝑡𝛾𝛾 = θ(1 − γ)−1 α⁄  

Parameter Estimation 

Plotting Method 

Least Mean 
Square      
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

X-Axis Y-Axis 𝛼𝛼� = −𝑚𝑚 
𝜃𝜃� = exp �

𝑐𝑐
𝛼𝛼�� ln (𝑡𝑡𝑖𝑖) ln[1 − 𝐹𝐹] 

Maximum Likelihood Function 

Likelihood 
Function 

For complete data: 

𝐿𝐿(𝜃𝜃,𝛼𝛼|𝐸𝐸) = αnFθαnF�
1

tiα+1
nF

i=1�������������
failures

 

Log-Likelihood 
Function Λ(𝜃𝜃,𝛼𝛼|𝐸𝐸) = nF ln(α) + nFαln (θ) − (𝛼𝛼 + 1)� ln 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1�������������������������
failures

 

∂Λ
∂α = 0 

solve for 𝛼𝛼 to get 𝛼𝛼�: 
∂Λ
∂α = −

nF
α + nF ln θ −� ln 𝑡𝑡𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1�����������������
failures

= 0 

 

MLE Point 
Estimates 

The likelihood function increases as 𝜃𝜃 increases. Therefore the MLE 
point estimate is the largest 𝜃𝜃 which satisfies  θ ≤ ti < ∞: 
 

𝜃𝜃� = min�t1, … , tnF�       
 
Substituting 𝜃𝜃� gives the MLE for 𝛼𝛼�: 
 

𝛼𝛼� =
𝑛𝑛𝐹𝐹

∑ �ln 𝑡𝑡𝑖𝑖 − ln𝜃𝜃��𝑛𝑛𝐹𝐹
𝑖𝑖=1

 

 

Fisher 
Information 

 

𝐼𝐼(𝜃𝜃,𝛼𝛼) = �−1/𝛼𝛼2 0
0 1/𝜃𝜃2

� 

 

100𝛾𝛾% 
Confidence 
Intervals  
 

 1-Sided  Lower 2-Sided  Lower 2-Sided Upper 

𝛼𝛼� 
if 𝜃𝜃 is 
unknown 

𝛼𝛼�
2nF

𝜒𝜒2{1−γ}(2n− 2) 
𝛼𝛼�

2nF
𝜒𝜒2�1−γ2 �(2n− 2) 

𝛼𝛼�
2nF

𝜒𝜒2�1+γ2 �(2n− 2) 
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(for complete 
data) 

𝛼𝛼� 
if 𝜃𝜃 is 
known 

𝛼𝛼�
2nF

𝜒𝜒2{1−γ}(2n) 
𝛼𝛼�

2nF
𝜒𝜒2�1−γ2 �(2n) 

𝛼𝛼�
2nF

𝜒𝜒2�1+γ2 �(2n− 2) 

(Johnson et al. 1994, p.583) Where  𝜒𝜒𝛾𝛾2(𝑛𝑛) is the 100𝛾𝛾th percentile of the 
𝜒𝜒2-distribution with 𝑛𝑛 degrees of freedom. 

Bayesian 

Non-informative Priors when 𝜽𝜽 is known,  𝝅𝝅𝟎𝟎(𝜶𝜶)  
 (Yang and Berger 1998, p.22) 

Type Prior 

Jeffery and 
Reference 

1
𝛼𝛼 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist. of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝑏𝑏 
from 

𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑡𝑡; a,𝑏𝑏) 

Uniform 
with known 

a 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Pareto 𝜃𝜃𝑜𝑜,𝛼𝛼0 
𝜃𝜃 = max {𝑡𝑡1, … , 𝑡𝑡𝑛𝑛𝐹𝐹} 

 
𝛼𝛼 = 𝛼𝛼0 + 𝑛𝑛𝐹𝐹 

𝜃𝜃 
from 

𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝑡𝑡;θ,𝛼𝛼) 

Pareto with 
known 𝛼𝛼 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Pareto a0,Θ0 

a = a𝑜𝑜 − 𝛼𝛼𝑛𝑛𝐹𝐹 
where a0 > 𝛼𝛼𝑛𝑛𝐹𝐹 

 
Θ = Θ0 

𝛼𝛼 
from 

𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝑡𝑡;θ,𝛼𝛼) 

Pareto with 
known 𝜃𝜃 

𝑛𝑛𝐹𝐹 failures 
at times 𝑡𝑡𝑖𝑖 

Gamma k0, λ0 

k = k𝑜𝑜 + 𝑛𝑛𝐹𝐹 
 

λ = λ𝑜𝑜 + � ln �
𝑥𝑥𝑖𝑖
𝜃𝜃 �

𝑛𝑛𝐹𝐹

𝑖𝑖=1

  
  

Description , Limitations and Uses 

Example 5 components are put on a test with the following failure times: 
108, 125, 458, 893, 13437  hours 

 
MLE Estimates are: 
 

𝜃𝜃� = 108       
 
Substituting 𝜃𝜃� gives the MLE for 𝛼𝛼�: 
 

𝛼𝛼� =
5

∑ (ln 𝑡𝑡𝑖𝑖 − ln (108))𝑛𝑛𝐹𝐹
𝑖𝑖=1

= 0.8029 

 
90% confidence interval for 𝛼𝛼�: 
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�
𝛼𝛼�

10
𝜒𝜒2

{0.05}(8),
𝛼𝛼�

10
𝜒𝜒2

{0.95}(8)�  
[0.2194,   1.2451]  

Characteristics  80/20 Rule. Most commonly described as the basis for the “80/20 
rule” (In a quality context, for example, 80% of manufacturing defects 
will be a result from 20% of the causes).  
 
Conditional Distribution. The conditional probability distribution 
given that the event is greater than or equal to a value 𝜃𝜃1 exceeding 
𝜃𝜃 is a Pareto distribution with the same index 𝛼𝛼 but with a minimum 
𝜃𝜃1 instead of 𝜃𝜃.  
 
Types. This distribution is known as a Pareto distribution of the first 
kind. The Pareto distribution of the second kind (not detailed here) is 
also known as the Lomax distribution. Pareto also proposed a third 
distribution now known as a Pareto distribution of the third kind.  
 
Pareto and the Lognormal Distribution. The Lognormal 
distribution models similar physical phenomena as the Pareto 
distribution. The two distributions have different weights at the 
extremities. 
 
Let: 

Xi~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(θ,αi) 
 
Minimum property 

min {𝑋𝑋,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶 �𝜃𝜃,�𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 

For constant 𝜃𝜃.  

Applications Rare Events. The survival function ‘slowly’ decreases compared to 
most life distributions which makes it suitable for modeling rare 
events which have large outcomes. Examples include natural events 
such as the distribution of the daily rain fall, or the size of 
manufacturing defects.  

Resources Online: 
http://mathworld.wolfram.com/ParetoDistribution.html 
http://en.wikipedia.org/wiki/Pareto_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Arnold, B., 1983. Pareto distributions, Fairland, MD: International Co-
operative Pub. House.   
 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1994. Continuous 
Univariate Distributions, Vol. 1 2nd ed., Wiley-Interscience.   
 

Relationship to Other Distributions 

http://mathworld.wolfram.com/ParetoDistribution.html
http://en.wikipedia.org/wiki/Pareto_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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Exponential 
Distribution 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Let  
𝑌𝑌~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑋𝑋 = ln(𝑌𝑌 𝜃𝜃⁄ ) 

Then 
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆 = 𝛼𝛼) 

Chi-Squared 
Distribution 

χ2(𝑥𝑥;𝐶𝐶) 

Let  
𝑌𝑌~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼)          𝑉𝑉𝑛𝑛𝑑𝑑             𝑋𝑋 = 2α ln(𝑌𝑌 𝜃𝜃⁄ ) 

Then 
𝑋𝑋~𝜒𝜒2(𝐶𝐶 = 2) 

(Johnson et al. 1994, p.526) 

Logistic 
Distribution 
𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(µ, 𝑠𝑠) 

 

Let   

𝑋𝑋~𝑃𝑃𝑉𝑉𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶(𝜃𝜃,𝛼𝛼)         𝑉𝑉𝑛𝑛𝑑𝑑             𝑌𝑌 = − ln ��
X
θ�

α
− 1� 

Then 
𝑌𝑌~𝐿𝐿𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐(0,1) 

(Hastings et al. 2000, p.127) 
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4.7. Triangle Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝑉𝑉 −∞ ≤ 𝑉𝑉 < 𝑏𝑏 Minimum Value. 𝑉𝑉 is the lower bound  

𝑏𝑏 𝑉𝑉 < 𝑏𝑏 < ∞ Maximum Value. 𝑏𝑏 is the upper 
bound. 

𝑐𝑐 𝑉𝑉 ≤ 𝑐𝑐 ≤ 𝑏𝑏 Mode Value. 𝑐𝑐 is the mode of the 
distribution (top of the triangle). 

Random Variable 𝑉𝑉 ≤ 𝑡𝑡 ≤ 𝑏𝑏 

Distribution Formulas 

PDF 𝑓𝑓(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 2(t− a)

(b − a)(c − a)    for  a ≤ t ≤ c

2(b − t)
(b − a)(b − c)    for  c ≤ t ≤ b

     

 

 

CDF 𝐹𝐹(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ (t − a)2

(b − a)(c − a)           for  a ≤ t ≤ c

1 −
(b − t)2

(b − a)(b − c)    for  c ≤ t ≤ b
   

  

Reliability 𝑅𝑅(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧1 −

(t − a)2

(b − a)(c − a)    for  a ≤ t ≤ c

(b − t)2

(b − a)(b − c)            for  c ≤ t ≤ b
   

  

Properties and Moments 

Median 
𝑉𝑉 + �1

2
(𝑏𝑏 − 𝑉𝑉)(𝑐𝑐 − 𝑉𝑉)  𝑓𝑓𝐶𝐶𝑟𝑟 𝑐𝑐 ≥

𝑏𝑏 − 𝑉𝑉
2  

 

𝑏𝑏 − �1
2
(𝑏𝑏 − 𝑉𝑉)(𝑏𝑏 − 𝑐𝑐)  𝑓𝑓𝐶𝐶𝑟𝑟 𝑐𝑐 <

𝑏𝑏 − 𝑉𝑉
2  

 

Mode 𝑐𝑐 

Mean - 1st Raw Moment 𝑉𝑉 + 𝑏𝑏 + 𝑐𝑐
3  

Variance - 2nd Central Moment 𝑉𝑉2 + 𝑏𝑏2 + 𝑐𝑐2 − 𝑉𝑉𝑏𝑏 − 𝑉𝑉𝑐𝑐 − 𝑏𝑏𝑐𝑐
18  

Skewness - 3rd Central Moment √2(𝑉𝑉 + 𝑏𝑏 − 2𝑐𝑐)(2𝑉𝑉 − 𝑏𝑏 − 𝑐𝑐)(𝑉𝑉 − 2𝑏𝑏 + 𝑐𝑐)
5(𝑉𝑉2 + 𝑏𝑏2 + 𝑐𝑐2 − 𝑉𝑉𝑏𝑏 − 𝑉𝑉𝑐𝑐 − 𝑏𝑏𝑐𝑐)3/2  

Excess kurtosis - 4th Central Moment −3
5  
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Characteristic Function 
−2

(b − c)eita − (b − a)eitc + (c − a)eitb

(b − a)(c − a)(b − c)t2  

100γ % Percentile Function 𝑡𝑡𝛾𝛾 = a + �γ(b − a)(c − a)  𝑓𝑓𝐶𝐶𝑟𝑟  𝛾𝛾 < 𝐹𝐹(𝑐𝑐) 
 
𝑡𝑡𝛾𝛾 = b − �(1 − γ)(b − a)(b − c)  𝑓𝑓𝐶𝐶𝑟𝑟  𝛾𝛾 ≥ 𝐹𝐹(𝑐𝑐) 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Functions 𝐿𝐿(𝑉𝑉, 𝑏𝑏, 𝑐𝑐|𝐸𝐸) = �

2(ti − a)
(b − a)(c − a)

r

i=1���������������
failers to the left of c

.�
2(b − ti)

(b − a)(b − c)

nF

i=r+1���������������
failures to the right of c

 

= �
2

b − a�
𝑛𝑛𝐹𝐹
�

ti − a
(c − a)

r

i=1
�

b − ti
(b − c)

nF

i=r+1
 

 
Where failure times are ordered: 

𝑇𝑇1 ≤ 𝑇𝑇2 ≤ ⋯ ≤ 𝑇𝑇𝑟𝑟 ≤ ⋯ ≤ 𝑇𝑇𝑛𝑛𝐹𝐹 
and 𝑟𝑟 is the number of failure times less than 𝑐𝑐 and 𝑠𝑠 is the number of 
failure times greater than 𝑐𝑐. Therefore 𝑛𝑛𝐹𝐹 = 𝑟𝑟 + 𝑠𝑠. 

Point 
Estimates 

The MLE estimates a�, b� ,  and c� are obtained by numerically calculating 
the likelihood function for different r and selecting the maximum where 
c� = Xr�. 
 

max
𝑎𝑎 ≤ 𝑐𝑐 ≤ 𝑏𝑏

 𝐿𝐿(𝑉𝑉, 𝑏𝑏, 𝑐𝑐|𝐸𝐸) = �
2

b − a�
𝑛𝑛𝐹𝐹

{𝑀𝑀(𝑉𝑉, 𝑏𝑏, �̂�𝑟(𝑉𝑉, 𝑏𝑏)} 
where 

𝑀𝑀(𝑉𝑉, 𝑏𝑏, 𝑟𝑟) = �
ti − a

(tr − a)
r−1

i=1
�

b − ti
(b − tr)

nF

i=r+1
 

 
𝑟𝑟(𝑉𝑉, 𝑏𝑏) =  arg max

𝑟𝑟∈{1,…,𝑛𝑛𝐹𝐹}
𝑀𝑀(𝑉𝑉, 𝑏𝑏, 𝑟𝑟) 

 
Note that the MLE estimates for a and 𝑏𝑏 are not the same as the uniform 
distribution: 

a� ≠ min (t1F, t2F … ) 
b� ≠ max (t1F, t2F … ) 

(Kotz & Dorp 2004) 

Description , Limitations and Uses 

Example When eliciting an opinion from an expert on the possible value of a 
quantity, 𝑥𝑥, the expert may give : 
    - Lowest possible value = 0 
    - Highest possible value = 1 
    - Estimate of most likely value (mode) = 0.7 
 
The corresponding distribution for 𝑥𝑥 may be a triangle distribution 
with parameters: 

𝑉𝑉 = 0, 𝑏𝑏 = 1, 𝑐𝑐 = 0.7 
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Characteristics  Standard Triangle Distribution. The standard triangle distribution 
has 𝑉𝑉 = 0, 𝑏𝑏 = 1. This distribution has a mean at  �𝑐𝑐 2⁄  and median 
at 1 −�(1 − 𝑐𝑐) 2⁄ . 
 
Symmetrical Triangle Distribution. The symmetrical triangle 
distribution occurs when 𝑐𝑐 = (𝑏𝑏 − 𝑉𝑉)/2. The symmetrical triangle 
distribution is formed from the average of two uniform random 
variables (see related distributions). 
 

Applications Subjective Representation. The triangle distribution is often used 
to model subjective evidence where 𝑉𝑉 and 𝑏𝑏 are the bounds of the 
estimation and 𝑐𝑐 is an estimation of the mode.   
 
Substitution to the Beta Distribution. Due to the triangle 
distribution having bounded support it may be used in place of the 
beta distribution.  
 
Monte Carlo Simulation. Used to approximate distributions of 
variables when the underlying distribution is unknown. A distribution 
of interest is obtained by conducting Monte Carlo simulation of a 
model using the triangle distributions as inputs.   

Resources Online: 
http://mathworld.wolfram.com/TriangularDistribution.html 
http://en.wikipedia.org/wiki/Triangular_distribution 
 
Books: 
Kotz, S. & Dorp, J.R.V., 2004. Beyond Beta: Other Continuous 
Families Of Distributions With Bounded Support And Applications, 
World Scientific Publishing Company.   
 

Relationship to Other Distributions 

Uniform 
Distribution 
 

𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑡𝑡; a, b) 

Let  

Xi~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑉𝑉, 𝑏𝑏)          𝑉𝑉𝑛𝑛𝑑𝑑          Y =
X1 + X2

2  
Then 

Y~𝑇𝑇𝑟𝑟𝑖𝑖𝑉𝑉𝑛𝑛𝑅𝑅𝑠𝑠𝑒𝑒 �a,
b − a

2 , b� 
 

Beta Distribution 
 
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡; α,𝛽𝛽 ) 

Special Cases: 
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(1,2 ) = 𝑇𝑇𝑟𝑟𝑖𝑖𝑉𝑉𝑛𝑛𝑅𝑅𝑠𝑠𝑒𝑒(0,0,1) 
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(2,1 ) = 𝑇𝑇𝑟𝑟𝑖𝑖𝑉𝑉𝑛𝑛𝑅𝑅𝑠𝑠𝑒𝑒(0,1,1) 

http://mathworld.wolfram.com/TriangularDistribution.html
http://en.wikipedia.org/wiki/Triangular_distribution
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4.8. Truncated Normal Continuous 
Distribution 

Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

  
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 

𝜇𝜇 −∞ < µ <  ∞ Location parameter: The mean of the 
distribution.  

𝜎𝜎2 σ2 > 0 Scale parameter: The standard 
deviation of the distribution. 

𝑉𝑉𝐿𝐿 −∞ < 𝑉𝑉𝐿𝐿 < 𝑏𝑏𝑈𝑈 
Lower Bound: 𝑉𝑉𝐿𝐿  is the lower bound. 
The standard normal transform of 𝑉𝑉𝐿𝐿 
is 𝑧𝑧𝑎𝑎 = 𝑎𝑎𝐿𝐿−𝜇𝜇

𝜎𝜎
. 

𝑏𝑏𝑈𝑈 𝑉𝑉𝐿𝐿 < 𝑏𝑏𝑈𝑈 < ∞ 
Upper Bound: 𝑏𝑏𝑈𝑈 is the upper bound. 
The standard normal transform of 𝑏𝑏𝑈𝑈 
is 𝑧𝑧𝑏𝑏 = 𝑏𝑏𝑈𝑈−𝜇𝜇

𝜎𝜎
. 

Limits 𝑉𝑉𝐿𝐿 < 𝑥𝑥 ≤ 𝑏𝑏𝑈𝑈 

Distribution Left Truncated Normal 
𝑥𝑥 ∈ [0,∞) 

General Truncated Normal 
𝑥𝑥 ∈ [𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈] 

PDF 

for  0 ≤ 𝑥𝑥 ≤ ∞ 

𝑓𝑓(𝑥𝑥) =
𝜙𝜙(zx)

σΦ(−z0) 

otherwise 
𝑓𝑓(𝑥𝑥) = 0 

for  𝑉𝑉𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑈𝑈 

𝑓𝑓(𝑥𝑥) =
1
σ𝜙𝜙(zx)

Φ(zb) −Φ(za) 

otherwise 
𝑓𝑓(𝑥𝑥) = 0 

where 
     𝜙𝜙 is the standard normal pdf with  𝜇𝜇 = 0 and 𝜎𝜎2 = 1 
      Φ is the standard normal cdf with  𝜇𝜇 = 0 and 𝜎𝜎2 = 1  
      𝑧𝑧𝑖𝑖 = �𝑖𝑖−𝜇𝜇

𝜎𝜎
� 

CDF 

for  𝑥𝑥 < 0 
𝐹𝐹(𝑥𝑥) = 0 

 
for  0 ≤ 𝑥𝑥 < ∞ 
 

𝐹𝐹(𝑥𝑥) =
Φ(zx) −Φ(z0)

Φ(−z0)  

 

for  𝑥𝑥 < aL 
𝐹𝐹(𝑥𝑥) = 0 

 
for  𝑉𝑉𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑈𝑈  

𝐹𝐹(𝑥𝑥) =
Φ(zx) −Φ(za)
Φ(zb) −Φ(za) 

 
for  𝑥𝑥 > bU 

𝐹𝐹(𝑥𝑥) = 1 
 

Reliability 

for  𝑥𝑥 < 0 
𝑅𝑅(𝑥𝑥) = 1 

 
for  0 ≤ 𝑥𝑥 < ∞ 
 

𝑅𝑅(𝑥𝑥) =
Φ(z0) −Φ(zx)

Φ(−z0)  

 

for  𝑥𝑥 < aL 
𝑅𝑅(𝑥𝑥) = 1 

 
for  𝑉𝑉𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑈𝑈  

𝑅𝑅(𝑥𝑥) =
Φ(zb) −Φ(zx)
Φ(zb) −Φ(za) 

 
for  𝑥𝑥 > bU 

𝑅𝑅(𝑥𝑥) = 0 
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Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

for  𝑡𝑡 < 0  
𝑚𝑚(𝑥𝑥) =  𝑅𝑅(𝑡𝑡 + 𝑥𝑥) 

 
for  0 ≤ 𝑡𝑡 < ∞  

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡)  

=
1 −Φ(zt+x)

1 −Φ(zt)
 

=
Φ�µ − x − t

σ �

Φ �µ − t
σ �

 

for  𝑡𝑡 < aL 
𝑚𝑚(𝑥𝑥) =  𝑅𝑅(𝑡𝑡 + 𝑥𝑥) 

 
for  𝑉𝑉𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑏𝑏𝑈𝑈  

𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥|𝑡𝑡) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡)  

=
Φ(zb) −Φ(zt+x)
Φ(zb) −Φ(zt)

 

 
for  𝑡𝑡 > bU  

𝑚𝑚(𝑥𝑥) = 0 

𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡.  
Note: 𝑥𝑥 = 0 at 𝑡𝑡. This operation is the equivalent of t replacing the 
lower bound.  

Mean Residual Life 𝑢𝑢(𝑡𝑡) =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡) =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑡𝑡

𝑅𝑅(𝑡𝑡)  

Hazard Rate 

for  𝑥𝑥 < 0 
ℎ(𝑥𝑥) = 0 

 
for  0 ≤ 𝑥𝑥 < ∞ 
 

ℎ(𝑥𝑥) =
1
σ𝜙𝜙(zx)[1 −Φ(zx)]

[1 −Φ(z0)]2  

for  𝑥𝑥 < aL 
ℎ(𝑥𝑥) = 0 

 
for  𝑉𝑉𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑈𝑈 
 

ℎ(𝑥𝑥) =
1
σ𝜙𝜙(zx)[Φ(zb) −Φ(zx)]

[Φ(zb) −Φ(za)]2  

 
for  𝑥𝑥 > bU 

ℎ(𝑥𝑥) = 0 

Cumulative Hazard 
Rate 𝐻𝐻(𝑡𝑡) = − ln[𝑅𝑅(𝑡𝑡)] 𝐻𝐻(𝑡𝑡) = − ln[𝑅𝑅(𝑡𝑡)] 

Properties and 
Moments 

Left Truncated Normal 
𝑥𝑥 ∈ [0,∞) 

General Truncated Normal 
𝑥𝑥 ∈ [𝑉𝑉𝐿𝐿,𝑏𝑏𝑈𝑈] 

Median No closed form No closed form 

Mode 𝜇𝜇  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜇𝜇 ≥ 0 
0  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜇𝜇 < 0 

𝜇𝜇  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜇𝜇 ∈ [𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈] 
𝑉𝑉𝐿𝐿  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜇𝜇 < 𝑉𝑉𝐿𝐿 
𝑏𝑏𝑈𝑈   𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜇𝜇 > 𝑏𝑏𝑈𝑈 

Mean  
1st Raw Moment µ +

𝜎𝜎𝜙𝜙(z0)
Φ(−z0) 

where 
𝑧𝑧0 =

−µ
σ  

µ + 𝜎𝜎
𝜙𝜙(za) −𝜙𝜙(zb)
Φ(zb) −Φ(za) 

where 

𝑧𝑧𝑎𝑎 =
𝑉𝑉𝐿𝐿 − µ
σ , 𝑧𝑧𝑏𝑏 =

𝑏𝑏𝑈𝑈 − µ
σ  

Variance 
2nd Central Moment 

σ2[1 − {−Δ0}2 − Δ1] 
where 

σ2[1 − {−Δ0}2 − Δ1] 
where 



138  Univariate Continuous Distributions 
Tr

un
c 

N
or

m
al

 

Δ𝑘𝑘 =
𝑧𝑧0𝑘𝑘𝜙𝜙(𝑧𝑧0)
Φ(𝑧𝑧0) − 1 

 

Δ𝑘𝑘 =
𝑧𝑧𝑏𝑏𝑘𝑘𝜙𝜙(𝑧𝑧𝑏𝑏) − 𝑧𝑧𝑎𝑎𝑘𝑘𝜙𝜙(𝑧𝑧𝑎𝑎)
Φ(𝑧𝑧𝑏𝑏) −Φ(𝑧𝑧𝑎𝑎)  

 

Skewness 
3rd Central Moment 

−1

𝑉𝑉
3
2

[2Δ03 + (3Δ1 − 1)Δ0 + Δ2] 

where 
𝑉𝑉 = 1 − Δ1 − Δ02 

Excess kurtosis  
4th Central Moment 

1
𝑉𝑉2

[−3Δ04 − 6Δ1Δ02 − 2Δ02 − 4Δ2Δ0 − 3Δ1 − Δ3 + 3] 
 

Characteristic 
Function 

See (Abadir & Magdalinos 2002, pp.1276-1287) 

100𝛼𝛼% Percentile 
Function 

𝑡𝑡𝛼𝛼 = 
µ + σΦ−1{α + Φ(z0)[1 − α]}  
 

𝑡𝑡𝛼𝛼 = 
µ + σΦ−1{αΦ(zb) + Φ(za)[1 − α]}  

 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Function 

For limits [𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈]: 

𝐿𝐿(𝜇𝜇,𝜎𝜎, 𝑉𝑉𝐿𝐿,𝑏𝑏𝑈𝑈) =
1

�σ√2π{Φ(zb) −Φ(za)}�
nF� exp �−

1
2 �
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎 �

2
�

nF

i=1�����������������������������������
failures

 

=
1

�σ√2π{Φ(zb) −Φ(za)}�
nF exp�−

1
2𝜎𝜎2�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

�
�����������������������������������

failures

 

 
For limits [0,∞) 

𝐿𝐿(𝜇𝜇,𝜎𝜎) =
1

�Φ{−z0}σ√2π�
nF� exp �−

1
2 �
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎 �

2
�

nF

i=1�����������������������������
failures

 

=
1

�Φ{−z0}σ√2π�
nF exp�−

1
2𝜎𝜎2�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

�
�����������������������������

failures

 

 

Log-Likelihood 
Function 

For limits [𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈]: 
Λ(𝜇𝜇,𝜎𝜎, 𝑉𝑉𝐿𝐿,𝑏𝑏𝑈𝑈|𝐸𝐸)

= −nF ln[Φ(zb) −Φ(za)] − nF ln�σ√2π� −
1

2𝜎𝜎2�
(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑛𝑛𝐹𝐹

𝑖𝑖=1���������������������������������������
failures

 

 
For limits [0,∞) 
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Λ(𝜇𝜇,𝜎𝜎|𝐸𝐸) =  −𝑛𝑛𝐹𝐹 ln(𝛷𝛷{−𝑧𝑧0}) − 𝑛𝑛𝐹𝐹 ln�𝜎𝜎√2𝜋𝜋� −
1

2𝜎𝜎2�
(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑛𝑛𝐹𝐹

𝑖𝑖=1�����������������������������������
failures

 

 

∂Λ
∂µ = 0 ∂Λ

∂µ =
−nF
σ �

ϕ(za) −ϕ(zb)
Φ(zb) −Φ(za)� +

1
𝜎𝜎2�(𝑥𝑥𝑖𝑖 − 𝜇𝜇)

𝑛𝑛𝐹𝐹

𝑖𝑖=1�������������������������
failures

= 0 

∂Λ
∂σ = 0 ∂Λ

∂σ =
−nF
σ2 �

zaϕ(za) − zbϕ(zb)
Φ(zb) −Φ(za) � −

nF
σ +

1
𝜎𝜎3�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1���������������������������������
failures

= 0 

 

MLE Point 
Estimates 

First Estimate the values for 𝑧𝑧𝑎𝑎 and 𝑧𝑧𝑏𝑏 by solving the simultaneous 
equations numerically (Cohen 1991, p.33): 
 

𝐻𝐻1(𝑧𝑧𝑎𝑎 , 𝑧𝑧𝑏𝑏) =
𝑄𝑄𝑎𝑎 − 𝑄𝑄𝑏𝑏 − 𝑧𝑧𝑎𝑎

𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎
=

�̅�𝑥 − 𝑉𝑉𝐿𝐿
𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿

 

 

𝐻𝐻2(𝑧𝑧𝑎𝑎 , 𝑧𝑧𝑏𝑏) =
1 + 𝑧𝑧𝑎𝑎𝑄𝑄𝑎𝑎 − 𝑧𝑧𝑏𝑏𝑄𝑄𝑏𝑏 − (𝑄𝑄𝑎𝑎 − 𝑄𝑄𝑏𝑏)2

(𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎)2 =
𝑠𝑠2

(𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿)2 

 
Where: 

𝑄𝑄𝑎𝑎 =
𝜙𝜙(𝑧𝑧𝑎𝑎)

Φ(𝑧𝑧𝑏𝑏) −Φ(𝑧𝑧𝑎𝑎),   𝑄𝑄𝑏𝑏 =
𝜙𝜙(𝑧𝑧𝑏𝑏)

Φ(𝑧𝑧𝑏𝑏) −Φ(𝑧𝑧𝑎𝑎) 

 

𝑧𝑧𝑎𝑎 =
𝑉𝑉𝐿𝐿 − 𝜇𝜇
𝜎𝜎 , 𝑧𝑧𝑏𝑏 =

𝑏𝑏𝑈𝑈 − 𝜇𝜇
𝜎𝜎  

�̅�𝑥 =
1
𝑛𝑛𝐹𝐹�𝑥𝑥𝑖𝑖

𝑛𝑛𝐹𝐹

0

,   𝑠𝑠2 =
1

𝑛𝑛𝐹𝐹 − 1�
(𝑥𝑥𝑖𝑖 − �̅�𝑥)2

𝑛𝑛𝐹𝐹

0

 

 
The distribution parameters can then be estimated using: 

𝜎𝜎� =
𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿
𝑧𝑧𝑏𝑏� − 𝑧𝑧𝑎𝑎�

, �̂�𝜇 = 𝑉𝑉𝐿𝐿 − 𝜎𝜎�𝑧𝑧𝑎𝑎� 

 
(Cohen 1991, p.44) provides a graphical procedure to estimate 
parameters to use as the starting point for numerical solvers.  
 
For the case where the limits are [0,∞) first numerically solve for 𝑧𝑧0: 

1 − Q0(Q0 − 𝑧𝑧0)
(Q0 − 𝑧𝑧0)2 =

𝑠𝑠2

�̅�𝑥  

where 

𝑄𝑄0 =
𝜙𝜙(𝑧𝑧0)

1 −Φ(𝑧𝑧0) 

 
The distribution parameters can be estimated using: 
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𝜎𝜎� =
�̅�𝑥

𝑄𝑄0 − 𝑧𝑧0�
, �̂�𝜇 = −𝜎𝜎�𝑧𝑧0�  

 
 
When the limits 𝑉𝑉𝐿𝐿 and 𝑏𝑏𝑈𝑈 are unknown, the likelihood function is 
maximized when the difference,  Φ(zb) −Φ(za), is at its minimum. This 
occurs when the difference between 𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿 is at its minimum. 
Therefore the MLE estimates for  𝑉𝑉𝐿𝐿 and 𝑏𝑏𝑈𝑈 are: 
 

aL� = min (t1F, t2F … ) 
bU� = max (t1F, t2F … ) 

 

Fisher 
Information 
(Cohen 1991, 
p.40) 

𝐼𝐼(𝜇𝜇,𝜎𝜎2) =

⎣
⎢
⎢
⎢
⎡ 1

𝜎𝜎2
[1 − 𝑄𝑄𝑎𝑎′ + 𝑄𝑄𝑏𝑏′ ]

1
𝜎𝜎2 �

2(�̅�𝑥 − 𝜇𝜇)
𝜎𝜎

− 𝜆𝜆𝑎𝑎 + 𝜆𝜆𝑏𝑏�

1
𝜎𝜎2 �

2(�̅�𝑥 − 𝜇𝜇)
𝜎𝜎

− 𝜆𝜆𝑎𝑎 + 𝜆𝜆𝑏𝑏�
1
𝜎𝜎2 �

3[𝑠𝑠2 + (�̅�𝑥 − 𝜇𝜇)2]
𝜎𝜎2

− 1− 𝜂𝜂𝑎𝑎 + 𝜂𝜂𝑏𝑏�⎦
⎥
⎥
⎥
⎤
 

Where 
𝑄𝑄𝑎𝑎′ = 𝑄𝑄𝑎𝑎(𝑄𝑄𝑎𝑎 − 𝑧𝑧𝑎𝑎), 𝑄𝑄𝑏𝑏′ = −𝑄𝑄𝑏𝑏(𝑄𝑄𝑏𝑏 + 𝑧𝑧𝑏𝑏) 
𝜆𝜆𝑎𝑎 = 𝑉𝑉𝐿𝐿𝑄𝑄′𝑎𝑎 + 𝑄𝑄𝑎𝑎, 𝜆𝜆𝑏𝑏 = 𝑏𝑏𝑈𝑈𝑄𝑄′𝑏𝑏 + 𝑄𝑄𝑏𝑏 
𝜂𝜂𝑎𝑎 = 𝑉𝑉𝐿𝐿(𝜆𝜆𝑎𝑎 + 𝑄𝑄𝑎𝑎), 𝜂𝜂𝑏𝑏 = 𝑏𝑏𝑈𝑈(𝜆𝜆𝑏𝑏 + 𝑄𝑄𝑏𝑏) 

 

100𝛾𝛾% 
Confidence 
Intervals 

Calculated from the Fisher information matrix. See section 1.4.7. For 
further detail and examples see (Cohen 1991, p.41) 

Bayesian 

No closed form solutions to priors exist.  

Description , Limitations and Uses 

Example 1 The size of washers delivered from a manufacturer is desired to be 
modeled. The manufacture has already removed all washers below 
15.95mm and washers above 16.05mm. The washers received have 
the following diameters: 
 

15.976, 15.970, 15.955, 16.007, 15.966, 15.952, 15.955 𝑚𝑚𝑚𝑚 
From data: 

�̅�𝑥 = 15.973, 𝑠𝑠2 = 4.3950𝐸𝐸-4 
 
Using numerical solver MLE Estimates for 𝑧𝑧𝑎𝑎 and 𝑧𝑧𝑏𝑏 are: 
 

𝑧𝑧𝑎𝑎� = 0, 𝑧𝑧𝑏𝑏� = 3.3351 
Therefore 

𝜎𝜎� =
𝑏𝑏𝑈𝑈 − 𝑉𝑉𝐿𝐿
𝑧𝑧𝑏𝑏� − 𝑧𝑧𝑎𝑎�

= 0.029984 

 
      �̂�𝜇 = 𝑉𝑉𝐿𝐿 − 𝜎𝜎�𝑧𝑧𝑎𝑎� = 15.95 

 
To calculate confidence intervals, first calculate: 
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𝑄𝑄𝑎𝑎′ = 0.63771, 𝑄𝑄𝑏𝑏′ = −0.010246 
𝜆𝜆𝑎𝑎 = 10.970, 𝜆𝜆𝑏𝑏 = −0.16138 
𝜂𝜂𝑎𝑎 = 187.71, 𝜂𝜂𝑏𝑏 = −2.54087 

 
90% confidence intervals: 

𝐼𝐼(𝜇𝜇,𝜎𝜎) = � 391.57 −10699
−10699 −209183� 

 
[𝐽𝐽𝑛𝑛(�̂�𝜇,𝜎𝜎�)]−1 = [𝑛𝑛𝐹𝐹𝐼𝐼(�̂�𝜇,𝜎𝜎�)]−1 = � 1.1835𝐸𝐸-4 −6.0535𝐸𝐸-6

−6.0535𝐸𝐸-6 −2.2154𝐸𝐸-7� 
 
90% confidence interval for 𝜇𝜇: 

��̂�𝜇 − Φ−1(0.95)√1.1835𝐸𝐸-4, �̂�𝜇 + Φ−1(0.95)√1.1835𝐸𝐸-4�  
[15.932,   15.968]  

 
90% confidence interval for 𝜎𝜎: 

�𝜎𝜎�. exp �
𝛷𝛷−1(0.95)√2.2154𝐸𝐸-7

−𝜎𝜎� � , 𝜎𝜎�. exp �
𝛷𝛷−1(0.95)√2.2154𝐸𝐸-7

𝜎𝜎� ��  

[2.922𝐸𝐸-2, 3.0769𝐸𝐸-2] 
 
An estimate can be made on how many washers the manufacturer 
discards: 
 
The distribution of washer sizes is a Normal Distribution with 
estimated parameters �̂�𝜇 = 15.95, 𝜎𝜎� = 0.029984. The percentage of 
washers wish pass quality control is: 
 

𝐹𝐹(16.05) −  𝐹𝐹(15.95) = 49.96% 
 
It is likely that there is too much variance in the manufacturing 
process for this system to be efficient.  
 

Example 2 The following example adjusts the calculations used in the Normal 
Distribution to account for the fact that the limit on distance is [0,∞). 
 
The accuracy of a cutting machine used in manufacturing is desired 
to be measured. 5 cuts at the required length are made and 
measured as: 

7.436, 10.270, 10.466, 11.039, 11.854 𝑚𝑚𝑚𝑚 
 
From data: 

�̅�𝑥 = 10.213, 𝑠𝑠2 = 2.789 
 
Using numerical solver MLE Estimates for 𝑧𝑧0 is: 
 

𝑧𝑧0� = −4.5062 
Therefore 

𝜎𝜎� =
�̅�𝑥

𝑄𝑄0 − 𝑧𝑧0�
= 2.26643 
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      �̂�𝜇 = −𝜎𝜎�𝑧𝑧𝑎𝑎� = 10.213 
 
To calculate confidence intervals, first calculate: 

𝑄𝑄0′ = 7.0042𝐸𝐸-5, 𝜆𝜆0 = 1.5543𝐸𝐸-5, 𝜆𝜆𝑏𝑏 = −0.16138 
 
90% confidence intervals: 

𝐼𝐼(𝜇𝜇,𝜎𝜎) = � 0.19466 −2.9453𝐸𝐸-6
−2.9453𝐸𝐸-6 0.12237 � 

 
[𝐽𝐽𝑛𝑛(�̂�𝜇,𝜎𝜎�)]−1 = [𝑛𝑛𝐹𝐹𝐼𝐼(�̂�𝜇,𝜎𝜎�)]−1 = � 1.0274 2.4728𝐸𝐸-5

2.4728𝐸𝐸-5 1.6343 � 
 
90% confidence interval for 𝜇𝜇: 

��̂�𝜇 − Φ−1(0.95)√1.0274, �̂�𝜇 + Φ−1(0.95)√1.0274�  
[8.546,   11.88]  

 
90% confidence interval for 𝜎𝜎: 

�𝜎𝜎�. exp �
𝛷𝛷−1(0.95)√1.6343

−𝜎𝜎� � , 𝜎𝜎�. exp �
𝛷𝛷−1(0.95)√1.6343

𝜎𝜎� ��  

[0.8962, 5.732] 
 
To compare these results to a non-truncated normal distribution: 

 90% Lower CI Point Est 90% Upper CI 
Norm - 𝜇𝜇 
Classical 

10.163 10.213 10.262 

Norm - 𝜎𝜎2 
Classical 

1.176 2.789 15.697 

Norm - 𝜇𝜇 
Bayesian 

8.761 10.213 11.665 

Norm - 𝜎𝜎2 
Bayesian 

0.886 2.789 6.822 

TNorm - 𝜇𝜇 8.546 10.213 11.88 
TNorm - 𝜎𝜎2 0.80317 5.1367 32.856 

*Note: The TNorm 𝜎𝜎 estimate and interval are squared.  
 
The truncated normal produced results which had a wider confidence 
in the parameter estimates, however the point estimates were within 
each others confidence intervals. In this case the truncation 
correction might be ignored for ease of calculation.  
 

Characteristics  For large 𝜇𝜇/𝜎𝜎  truncation may have negligible affect. In this case the 
use the Normal Continuous Distribution as an approximation. 
 
Let: 

X~𝑇𝑇𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(µ,σ2)   where   𝑋𝑋 ∈ [𝑉𝑉, 𝑏𝑏] 
 
Convolution Property. The sum of truncated normal distribution 
random variables is not a truncated normal distribution.  When 
truncation is symmetrical about the mean the sum of truncated 
normal distribution random variables is well approximated using: 
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𝑌𝑌 = �𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

   where 
bi − ai

2 = µi 

 
𝑌𝑌 ≈ 𝑇𝑇𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚��𝜇𝜇𝑖𝑖 ,�𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋𝑖𝑖)�       where   𝑌𝑌 ∈ [ ∑𝑉𝑉𝑖𝑖  ,∑𝑏𝑏𝑖𝑖  ] 

 
Linear Transformation Property (Cozman & Krotkov 1997) 
 

𝑌𝑌 = 𝑐𝑐𝑋𝑋 + 𝑑𝑑 
𝑌𝑌~𝑇𝑇𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑐𝑐𝜇𝜇 + 𝑑𝑑,𝑑𝑑2𝜎𝜎2)   where   𝑌𝑌 ∈ [𝑐𝑐𝑉𝑉 + 𝑑𝑑, 𝑐𝑐𝑏𝑏 + 𝑑𝑑] 

 

Applications Life Distribution. When used as a life distribution a truncated 
Normal Distribution may be used due to the constraint t≥0. However 
it is often found  that the difference in results is negligible. (Rausand 
& Høyland 2004) 
 
Repair Time Distributions. The truncated normal distribution may 
be used to model simple repair or inspection tasks that have a 
typical duration with little variation using the limits [0,∞)  
 
Failures After Pre-test Screening. When a customer receives a 
product from a vendor, the product may have already been subject 
to burn-in testing. The customer will not know the number of failures 
which occurred during the burn-in, but may know the duration. As 
such the failure distribution is left truncated. (Meeker & Escobar 
1998, p.269) 
 
Flaws under the inspection threshold.  When a flaw is not 
detected due to the flaw’s amplitude being less than the inspection 
threshold the distribution is left truncated.  (Meeker & Escobar 1998, 
p.266) 
 
Worst Case Measurements.  Sometimes only the worst performers 
from a population are monitored and have data collected. Therefore 
the threshold which determined that the item be monitored is the 
truncation limit. (Meeker & Escobar 1998, p.267) 
 
Screening Out Units With Large Defects. In quality control 
processes it may be common to remove defects which exceed a limit. 
The remaining population of defects delivered to the customer has a 
right truncated distribution. (Meeker & Escobar 1998, p.270) 
 

Resources Online: 
http://en.wikipedia.org/wiki/Truncated_normal_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 http://www.ntrand.com/truncated-normal-distribution/ 
 
Books: 
Cohen, 1991. Truncated and Censored Samples 1st ed., CRC 

http://en.wikipedia.org/wiki/Truncated_normal_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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Press.   
 
Patel, J.K. & Read, C.B., 1996. Handbook of the Normal Distribution 
2nd ed., CRC.   
 
Schneider, H., 1986. Truncated and censored samples from normal 
populations, M. Dekker.   
 

Relationship to Other Distributions 

Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑥𝑥; 𝜇𝜇,𝜎𝜎2) 

Let: 
𝑋𝑋~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2) 
𝑋𝑋 ∈ (∞,∞) 

Then: 
𝑌𝑌~T𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇,𝜎𝜎2, 𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈) 

𝑌𝑌 ∈ [𝑉𝑉𝐿𝐿, 𝑏𝑏𝑈𝑈] 

For further relationships see Normal Continuous Distribution 
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4.9. Uniform Continuous 
Distribution 

 
Probability Density Function - f(t) 

 
Cumulative Density Function - F(t) 

 
Hazard Rate - h(t) 
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Parameters & Description 

Parameters 
𝑉𝑉 0 ≤ 𝑉𝑉 < 𝑏𝑏 Minimum Value. 𝑉𝑉 is the lower bound 

of the uniform distribution. 

𝑏𝑏 𝑉𝑉 < 𝑏𝑏 < ∞ Maximum Value. 𝑏𝑏 is the upper bound 
of the uniform distribution.  

Random Variable 𝑉𝑉 ≤ 𝑡𝑡 ≤ 𝑏𝑏 

Distribution Time Domain Laplace 

PDF 

𝑓𝑓(𝑡𝑡) = �
1

b − a    for  a ≤ t ≤ b

0          otherwise      
 

=
1

b − a {𝑢𝑢(𝑡𝑡 − 𝑉𝑉) − 𝑢𝑢(𝑡𝑡 − 𝑏𝑏)} 
 
Where 𝑢𝑢(𝑡𝑡 − 𝑉𝑉) is the Heaviside 
step function. 

𝑓𝑓(𝑠𝑠) =
𝑒𝑒−𝑎𝑎𝑠𝑠 − 𝑒𝑒−𝑏𝑏𝑠𝑠

𝑠𝑠(𝑏𝑏 − 𝑉𝑉)  

CDF 

𝐹𝐹(𝑡𝑡) = �
0          for t < 𝑉𝑉         
t − a
b − a    for  a ≤ t ≤ b

1           for t > 𝑏𝑏         

  

=
t − a
b − a

{𝑢𝑢(𝑡𝑡 − 𝑉𝑉) − 𝑢𝑢(𝑡𝑡 − 𝑏𝑏)}
+ 𝑢𝑢(𝑡𝑡 − 𝑏𝑏) 

𝐹𝐹(𝑠𝑠) =
𝑒𝑒−𝑎𝑎𝑠𝑠 − 𝑒𝑒−𝑏𝑏𝑠𝑠

𝑠𝑠2(𝑏𝑏 − 𝑉𝑉)  

Reliability 𝑅𝑅(𝑡𝑡) = �

1          for t < 𝑉𝑉         
b − t
b − a    for  a ≤ t ≤ b

0           for t > 𝑏𝑏         

 𝑅𝑅(𝑠𝑠) =
𝑒𝑒−𝑏𝑏𝑠𝑠 − 𝑒𝑒−𝑎𝑎𝑠𝑠

𝑠𝑠2(𝑏𝑏 − 𝑉𝑉) +
1
𝑠𝑠 

Conditional 
Survivor Function 
𝑃𝑃(𝑇𝑇 > 𝑥𝑥 + 𝑡𝑡|𝑇𝑇 > 𝑡𝑡) 

For 𝑡𝑡 < 𝑉𝑉: 

𝑚𝑚(𝑥𝑥) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) = �

1                      for t + x < 𝑉𝑉          
b − (t + x)

b − a   for  a ≤ t + x ≤ b

0                     for t > 𝑏𝑏                

 

For 𝑉𝑉 ≤ 𝑡𝑡 ≤ 𝑏𝑏: 

𝑚𝑚(𝑥𝑥) =
𝑅𝑅(𝑡𝑡 + 𝑥𝑥)
𝑅𝑅(𝑡𝑡) = �

1                      for t + x < 𝑉𝑉          
b − (t + x)

b − t    for  a ≤ t + x ≤ b

0                     for t + x > 𝑏𝑏         

 

For 𝑡𝑡 > 𝑏𝑏: 
𝑚𝑚(𝑥𝑥) = 0 

Where  
𝑡𝑡 is the given time we know the component has survived to. 
𝑥𝑥 is a random variable defined as the time after 𝑡𝑡. Note: 𝑥𝑥 = 0 at 𝑡𝑡.   

Mean Residual 
Life 

For 𝑡𝑡 < 𝑉𝑉: 
𝑢𝑢(𝑡𝑡) = 1

2
(𝑉𝑉 + 𝑏𝑏) − 𝑡𝑡 

For 𝑉𝑉 ≤ 𝑡𝑡 ≤ 𝑏𝑏: 

𝑢𝑢(𝑡𝑡) = 𝑉𝑉 − 𝑡𝑡 −
(𝑉𝑉 − 𝑏𝑏)2

2(𝑡𝑡 − 𝑏𝑏) 
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For 𝑡𝑡 > 𝑏𝑏: 
𝑢𝑢(𝑡𝑡) = 0 

  

Hazard Rate ℎ(𝑡𝑡) = �
1

b − t    for  a ≤ t ≤ b

0          otherwise      
 

 

Cumulative 
Hazard Rate 𝐻𝐻(𝑡𝑡) = �

0                       for t < 𝑉𝑉         

− ln �
b − t
b − a�    for  a ≤ t ≤ b

∞                        for t > 𝑏𝑏         

 

Properties and Moments 

Median 1
2
(𝑉𝑉 + 𝑏𝑏) 

Mode Any value between 𝑉𝑉 and 𝑏𝑏 

Mean - 1st Raw Moment 1
2
(𝑉𝑉 + 𝑏𝑏) 

Variance - 2nd Central Moment 1
12

(𝑏𝑏 − 𝑉𝑉)2 

Skewness - 3rd Central Moment 0 

Excess kurtosis - 4th Central Moment −6
5
 

Characteristic Function eitb − eita

it(b − a)  

100α% Percentile Function 𝑡𝑡𝛼𝛼 = α(b − a) + a 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Functions 𝐿𝐿(𝑉𝑉,𝑏𝑏|𝐸𝐸) = �

1
b − a�

nF

�������
failures

.� �
b − tiS

b − a�
nS

i=1�����������
survivors

.� �1 +
tiRI − tiLI

b − a �
nI

i=1���������������
interval failures

 

This assumes that all times are within the bound a, b.  
 
When there is only complete failure data: 

𝐿𝐿(𝑉𝑉, 𝑏𝑏|𝐸𝐸) = �
1

b − a�
nF

 
where 

𝑉𝑉 ≤ 𝑡𝑡𝑖𝑖 ≤ 𝑏𝑏 

Point 
Estimates 

The likelihood function is maximized when a is large, b is small with the 
restriction that all times are between a and b. Thus: 
 

a� = min (t1F, t2F … ) 
b� = max (t1F, t2F … ) 
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When  𝑉𝑉 = 0 and 𝑏𝑏 is estimated with complete data the following 
estimates may be used where 𝑡𝑡𝑚𝑚𝑎𝑎𝑖𝑖 =  max (t1F, t2F … tnF). (Johnson et al. 
1995, p.286) 

1. MLE.                                          b� = 𝑡𝑡𝑚𝑚𝑎𝑎𝑖𝑖 
2. Min Mean Square Error.            b� = n+2

n+1
𝑡𝑡𝑚𝑚𝑎𝑎𝑖𝑖 

3. Unbiased Estimator.                  b� = n+1
n
𝑡𝑡𝑚𝑚𝑎𝑎𝑖𝑖 

4. Closest Estimator.                     b� = 21 n�   𝑡𝑡𝑚𝑚𝑎𝑎𝑖𝑖 
 
Procedures for parameter estimating when there is censored data is 
detailed in (Johnson et al. 1995, p.286) 
 

Fisher 
Information 

𝐼𝐼(𝑉𝑉, 𝑏𝑏) =

⎣
⎢
⎢
⎡

−1
(𝑉𝑉 − 𝑏𝑏)2

1
(𝑉𝑉 − 𝑏𝑏)2

1
(𝑉𝑉 − 𝑏𝑏)2

−1
(𝑉𝑉 − 𝑏𝑏)2⎦

⎥
⎥
⎤
 

Bayesian 

The Uniform distribution is widely used in Bayesian methods as a non-informative prior or 
to model evidence which only suggests bounds on the parameter.  
 
Non-informative Prior. The Uniform distribution can be used as a non-informative prior. 
As can be seen below, the only affect the uniform prior has on Bayes equation is to limit 
the range of the parameter for which the denominator integrates over. 
 

𝜋𝜋(𝜃𝜃|𝐸𝐸) =
𝐿𝐿(𝐸𝐸|𝜃𝜃) � 1

𝑏𝑏 − 𝑉𝑉�

∫ 𝐿𝐿(𝐸𝐸|𝜃𝜃) � 1
𝑏𝑏 − 𝑉𝑉�

𝑏𝑏
𝑎𝑎 𝑑𝑑𝜃𝜃

=
𝐿𝐿(𝐸𝐸|𝜃𝜃)

∫ 𝐿𝐿(𝐸𝐸|𝜃𝜃)𝑏𝑏
𝑎𝑎 𝑑𝑑𝜃𝜃

 

 
Parameter Bounds. This type of distribution allows an easy method to mathematically 
model soft data where only the parameter bounds can be estimated. An example is where 
uniform distribution can model a person’s opinion on the value 𝜃𝜃 where they know that it 
could not be lower than 𝑉𝑉 or greater than 𝑏𝑏, but is unsure of any particular value 𝜃𝜃 could 
take.  
 

Non-informative Priors 

Jeffrey’s Prior 1
𝑉𝑉 − 𝑏𝑏 

Description , Limitations and Uses 

Example For an example of the uniform distribution being used in Bayesian 
updating as a prior, 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(1,1) see the binomial distribution. 
 
Given the following data calculate the MLE parameter estimates: 

240,   585,   223,   751,   255 
 

a� = 223 
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b� = 751 

Characteristics  The Uniform distribution is a special case of the Beta distribution 
when 𝛼𝛼 = 𝛽𝛽 = 1. 
 
The uniform distribution has an increasing failure rate with lim

𝑡𝑡→𝑏𝑏
ℎ(𝑡𝑡) =

∞. 
 
The Standard Uniform Distribution has parameters 𝑉𝑉 = 0 and  𝑏𝑏 = 1. 
This results in 𝑓𝑓(𝑡𝑡) = 1  for 𝑉𝑉 ≤ 𝑡𝑡 ≤ 𝑏𝑏 and 0 otherwise.  
 

𝑇𝑇~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑉𝑉, 𝑏𝑏) 
Uniformity Property 
If 𝑡𝑡 > 𝑉𝑉 and 𝑡𝑡 + 𝛥𝛥 < 𝑏𝑏 then:  

𝑃𝑃(𝑡𝑡 → 𝑡𝑡 + ∆) = �
1

𝑏𝑏 − 𝑉𝑉 𝑑𝑑𝑥𝑥 =
𝑡𝑡+∆

𝑡𝑡

∆
𝑏𝑏 − 𝑉𝑉 

The probability that a random variable falls within any interval of fixed 
length is independent of the location, 𝑡𝑡, and is only dependent on the 
interval size, 𝛥𝛥. 
 
Variate Generation Property 

𝐹𝐹−1(𝑢𝑢) = 𝑢𝑢(𝑏𝑏 − 𝑉𝑉) + 𝑉𝑉 
 
Residual Property 
If k is a real constant where 𝑉𝑉 < 𝑘𝑘 < 𝑏𝑏   then:  

Pr (𝑇𝑇|𝑇𝑇 > 𝑘𝑘)~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑉𝑉 = 𝑘𝑘, 𝑏𝑏) 
 

Applications Random Number Generator. The uniform distribution is widely 
used as the basis for the generation of random numbers for other 
statistical distributions. The random uniform values are mapped to 
the desired distribution by solving the inverse cdf.  
 
Bayesian Inference. The uniform distribution can be used ss a non-
informative prior and to model soft evidence.  
 
Special Case of Beta Distribution. In applications like Bayesian 
statistics the uniform distribution is used as an uninformative prior by 
using a beta distribution of 𝛼𝛼 = 𝛽𝛽 = 1. 

Resources Online: 
http://mathworld.wolfram.com/UniformDistribution.html 
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous) 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1995. Continuous 
Univariate Distributions, Vol. 2 2nd ed., Wiley-Interscience.   

Relationship to Other Distributions 

Beta Distribution Let  

http://mathworld.wolfram.com/UniformDistribution.html
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡;α, β, a, b) 

Xi~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(0,1)          𝑉𝑉𝑛𝑛𝑑𝑑           X1 ≤ X2 ≤ ⋯ ≤ Xn 
Then 

Xr~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑟𝑟,𝑛𝑛 − 𝑟𝑟 + 1) 
Where 𝑛𝑛 and 𝑘𝑘 are integers. 
 
Special Case: 

𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑡𝑡;𝑉𝑉, 𝑏𝑏|𝛼𝛼 = 1, β = 1 ) = 𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(𝑡𝑡; 𝑉𝑉, 𝑏𝑏) 
 

Exponential 
Distribution 
 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Let  
𝑋𝑋~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)        𝑉𝑉𝑛𝑛𝑑𝑑       Y = exp (−𝜆𝜆𝑋𝑋) 

Then 
𝑌𝑌~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓(0,1) 
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5.1. Bernoulli Discrete Distribution 
 
Probability Density Function - f(k) 

 
Cumulative Density Function - F(k) 

 
Hazard Rate - h(k) 
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Parameters & Description 

Parameters 𝑝𝑝 0 ≤ 𝑝𝑝 ≤ 1 Bernoulli probability parameter. 
Probability of success.  

Random Variable 𝑘𝑘 ∈ {0, 1} 

Question The probability of getting exactly 𝑘𝑘 (0 or 1) successes in 1 trial with 
probability p. 

Distribution Formulas 

PDF 
𝑓𝑓(𝑘𝑘) = pk(1 − p)1−k 

= �1 − p    for  k = 0
p            for  k = 1 

CDF 
𝐹𝐹(𝑘𝑘) = (1 − p)1−k 

= �1 − p    for  k = 0
1            for  k = 1

 

Reliability 
𝑅𝑅(𝑘𝑘) = 1 − (1 − p)1−k 

= �p    for  k = 0
0    for  k = 1

 

Hazard Rate ℎ(𝑘𝑘) = �1 − p       for  k = 0
1              for k = 1 

 

Properties and Moments 

Mode 𝑘𝑘0.5 = ‖𝑝𝑝‖ 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑝𝑝 ≠ 0.5 
𝑘𝑘0.5 = {0,1} 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑝𝑝 = 0.5 

Mean - 1st Raw Moment 𝑝𝑝 

Variance - 2nd Central Moment 𝑝𝑝(1 − 𝑝𝑝) 

Skewness - 3rd Central Moment q − p
�pq

   𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑞𝑞 = (1 − 𝑝𝑝) 

Excess kurtosis - 4th Central Moment 6p2 − 6p + 1
p(1 − p)  

Characteristic Function (1 − p) + peit 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Function 

𝐿𝐿(𝑝𝑝|𝐸𝐸) = 𝑝𝑝∑𝑘𝑘𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−∑𝑘𝑘𝑖𝑖 
 
where 𝑛𝑛 is the number of Bernoulli trials 𝑘𝑘𝑖𝑖 ∈ {0,1}, and ∑𝑘𝑘𝑖𝑖 = ∑ 𝑘𝑘𝑖𝑖𝑛𝑛

𝑖𝑖=1  
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𝑑𝑑L
𝑑𝑑p = 0 

solve for 𝑝𝑝 
𝑑𝑑L
𝑑𝑑p = ∑k. p∑(ki)−1(1 − p)n−∑ki − (n −∑k)p∑ki(1 − p)n−1−∑ki = 0 

∑k. p∑(ki)−1(1 − p)n−∑ki = (n − ∑ki)p∑ki(1 − p)n−1−∑ki 
  
∑ki. p−1 = (n − ∑ki)(1 − p)−1 
  
(1 − p)

p
=

n − ∑ki
∑ki

 

  

p =
∑ki

n  
 

Fisher 
Information 𝐼𝐼(𝑝𝑝) =

1
𝑝𝑝(1 − 𝑝𝑝) 

MLE Point 
Estimates 

The MLE point estimate for p:  

p� =
∑k
n  

Fisher 
Information 𝐼𝐼(𝑝𝑝) =

1
𝑝𝑝(1 − 𝑝𝑝) 

 

Confidence 
Intervals 

See discussion in binomial distribution.  

Bayesian 

Non-informative Priors for p,  𝝅𝝅(𝑯𝑯)  
 (Yang and Berger 1998, p.6) 

Type Prior Posterior 

Uniform Proper 
Prior with limits 
𝑝𝑝 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Beta Distribution 

For a ≤ 𝑝𝑝 ≤ b 
𝑐𝑐.𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1 + 𝑘𝑘, 2 − 𝑘𝑘) 

 
Otherwise  𝜋𝜋(𝑝𝑝) = 0 

Uniform Improper 
Proir with limits 
𝑝𝑝 ∈ [0,1] 

1 = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1,1) 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1 + 𝑘𝑘, 2 − 𝑘𝑘) 

Jeffrey’s Prior 
Reference Prior 

1

�𝑝𝑝(1 − 𝑝𝑝)
= 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 �𝑝𝑝;

1
2 ,

1
2� 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 �𝑝𝑝;

1
2 + 𝑘𝑘, 1.5 − 𝑘𝑘� 

when 𝑝𝑝 ∈ [0,1] 

MDIP 1.6186𝑝𝑝𝑝𝑝(1 − 𝑝𝑝)1−𝑝𝑝 Proper - No Closed Form 

Novick and Hall 𝑝𝑝−1(1 − 𝑝𝑝)−1 = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(0,0) 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝;𝑘𝑘, 1 − 𝑘𝑘) 
when 𝑝𝑝 ∈ [0,1] 
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Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝑝𝑝 
from 

𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘;𝑝𝑝) 
Bernoulli 𝑘𝑘 failures 

in 1 trail   Beta 𝛼𝛼0,𝛽𝛽0  𝛼𝛼 = 𝛼𝛼𝑜𝑜 + 𝑘𝑘 
𝛽𝛽 = 𝛽𝛽𝑜𝑜 + 1 − 𝑘𝑘 

Description , Limitations and Uses 

Example When a demand is placed on a machine it undergoes a Bernoulli trial 
with success defined as a successful start. It is known the probability 
of a successful start, 𝑝𝑝, equals 0.8. Therefore the probability the 
machine does not start. 𝑓𝑓(0) = 0.2. 
 
For an example with multiple Bernoulli trials see the binomial 
distribution.  

Characteristics  A Bernoulli process is a probabilistic experiment that can have one 
of two outcomes, success (𝑘𝑘 =  1) with the probability of success is 
𝑝𝑝, and failure (𝑘𝑘 =  0) with the probability of failure is 𝑞𝑞 ≡ 1 −  𝑝𝑝. 
 
Single Trial. It’s important to emphasis that the Bernoulli distribution 
is for a single trial or event. The case of multiple Bernoulli trials with 
replacement is the binomial distribution. The case of multiple 
Bernoulli trials without replacement is the hypergeometric 
distribution. 
 

𝐾𝐾~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘|𝑝𝑝) 
Maximum Property 

max {𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑛𝑛}~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘;𝑝𝑝 = 1 − Π{1 − 𝑝𝑝𝑖𝑖}) 
Minimum property 

min {𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑛𝑛}~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘; 𝑝𝑝 = Π𝑝𝑝𝑖𝑖) 
Product Property 

�Ki

n

i=1

~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(Π𝑘𝑘;𝑝𝑝 = Π𝑝𝑝𝑖𝑖) 

 

Applications Used to model a single event which have only two outcomes. In 
reliability engineering it is most often used to model demands or 
shocks to a component where the component will fail with probability 
p. 
 
In practice it is rare for only a single event to be considered and so a 
binomial distribution is most often used (with the assumption of 
replacement). The conditions and assumptions of a Bernoulli trial 
however are used as the basis for each trial in a binomial distribution. 
See ‘Related Distributions’ and binomial distribution for more details.  
 
 

Resources Online: 
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http://mathworld.wolfram.com/BernoulliDistribution.html 
http://en.wikipedia.org/wiki/Bernoulli_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Collani, E.V. & Dräger, K., 2001. Binomial distribution handbook for 
scientists and engineers, Birkhäuser.   
 
Johnson, N.L., Kemp, A.W. & Kotz, S., 2005. Univariate Discrete 
Distributions 3rd ed., Wiley-Interscience.   

Relationship to Other Distributions 

Binomial 
Distribution 
 
𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘′|n, p) 

The Binomial distribution counts the number of successes in n 
independent observations of a Bernoulli process. 
 
Let  

𝐾𝐾𝑖𝑖~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(ki; p)             𝑉𝑉𝑛𝑛𝑑𝑑         𝑌𝑌 = �𝐾𝐾𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Then 
Y~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(k′ = ∑ki|n, p)    where  𝑘𝑘′ ∈ {1, 2, … ,𝑛𝑛} 

 
Special Case: 

𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(k; p) = 𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(k; p|n = 1) 
 
 

http://mathworld.wolfram.com/BernoulliDistribution.html
http://en.wikipedia.org/wiki/Bernoulli_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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5.2. Binomial Discrete Distribution 
 
Probability Density Function - f(k) 

  
Cumulative Density Function - F(k) 

  
Hazard Rate - h(k) 
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Parameters & Description 

Parameters 
𝑛𝑛 𝑛𝑛 ∈ {1, 2 … ,∞} Number of Trials. 

𝑝𝑝 0 ≤ 𝑝𝑝 ≤ 1 Bernoulli probability parameter. 
Probability of success in a single trial. 

Random Variable 𝑘𝑘 ∈ {0, 1, 2 … ,𝑛𝑛} 

Question The probability of getting exactly 𝑘𝑘 successes in 𝑛𝑛 trials. 

Distribution Formulas 

PDF 

𝑓𝑓(𝑘𝑘) = �n
k�pk(1 − p)n−k 

where k combinations from n: 

�𝑛𝑛𝑘𝑘� =  𝐶𝐶𝑘𝑘𝑛𝑛 = 𝐶𝐶𝑘𝑘𝑛𝑛 =
𝑛𝑛!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! =
𝑛𝑛
𝑘𝑘 𝐶𝐶𝑘𝑘−1

𝑛𝑛−1 

 

CDF 

𝐹𝐹(𝑘𝑘) = �
𝑛𝑛!

𝑗𝑗! (𝑛𝑛 − 𝑗𝑗)! pj(1 − p)n−j
k

j=0

 

= 𝐼𝐼1−𝑝𝑝(𝑛𝑛 − 𝑘𝑘,𝑘𝑘 + 1) 
 
where 𝐼𝐼𝑝𝑝(𝑉𝑉, 𝑏𝑏) is the Regularized Incomplete Beta function. See 
section 1.6.3. 
 
When 𝑛𝑛 ≥  20 and 𝑝𝑝 ≤  0.05, or if 𝑛𝑛 ≥  100 and 𝑛𝑛𝑝𝑝 ≤  10, this can 
be approximated by a Poisson distribution with 𝜇𝜇 = 𝑛𝑛𝑝𝑝: 

𝐹𝐹(𝑘𝑘) ≅ e−µ�
µj

j!

k

j=0

=
Γ(𝑘𝑘 + 1, 𝜇𝜇)

𝑘𝑘!
  

≅ 𝐹𝐹𝜒𝜒2(2𝜇𝜇, 2𝑘𝑘 + 2) 
 
When 𝑛𝑛𝑝𝑝 ≥ 10 and 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) ≥ 10 then the cdf can be 
approximated using a normal distribution: 

𝐹𝐹(𝑘𝑘) ≅ Φ�
𝑘𝑘 + 0.5 − 𝑛𝑛𝑝𝑝

�𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)
� 

Reliability 

𝑅𝑅(𝑘𝑘) = 1 −�
𝑛𝑛!

𝑗𝑗! (𝑛𝑛 − 𝑗𝑗)! pj(1 − p)n−j
k

j=0

 

= �
𝑛𝑛!

𝑗𝑗! (𝑛𝑛 − 𝑗𝑗)! pj(1 − p)n−j
n

j=k+1

 

= 𝐼𝐼𝑝𝑝(𝑘𝑘 + 1,𝑛𝑛 − 𝑘𝑘) 
 
where 𝐼𝐼𝑝𝑝(𝑉𝑉, 𝑏𝑏) is the Regularized Incomplete Beta function. See 
section 1.6.3. 
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Hazard Rate 

ℎ(𝑘𝑘) = �1 +
(1 + θ)n − ∑ �n

k� θ
jk

j=0

�n
k� θ

k
�

−1

 

where 
𝜃𝜃 =

𝑝𝑝
1 − 𝑝𝑝 

(Gupta et al. 1997) 

Properties and Moments 

Median 𝑘𝑘0.5 is either {⌊𝑛𝑛𝑝𝑝⌋, ⌈𝑛𝑛𝑝𝑝⌉} 

Mode ⌊(𝑛𝑛 + 1)𝑝𝑝⌋ 

Mean - 1st Raw Moment 𝑛𝑛𝑝𝑝 

Variance - 2nd Central Moment 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) 

Skewness - 3rd Central Moment 1 − 2p

�np(1− p)
 

Excess kurtosis - 4th Central Moment 6p2 − 6p + 1
np(1 − p)  

Characteristic Function �1 − p + peit�n 

100α% Percentile Function Numerically solve for 𝑘𝑘 (which is not 
arduous for 𝑛𝑛 ≤ 10): 

𝑘𝑘𝛼𝛼 = 𝐹𝐹−1(𝑛𝑛, 𝑝𝑝) 
 
For 𝑛𝑛𝑝𝑝 ≥ 10 and 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) ≥ 10 the 
normal approximation may be used: 
 

kα ≅ �Φ−1(𝛼𝛼)�𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) + 𝑛𝑛𝑝𝑝 − 0.5� 
 

Parameter Estimation 

Maximum Likelihood Function 

Likelihood 
Function 

For complete data only: 

𝐿𝐿(𝑝𝑝|𝐸𝐸) = ��
ni
ki�pki(1 − p)ni−ki

𝑛𝑛𝐵𝐵

i=1

 

= p∑ki(1 − p)∑ni−∑ki 
 
Where 𝑛𝑛𝐵𝐵 is the number of Binomial processes, ∑𝑘𝑘𝑖𝑖 = ∑ 𝑘𝑘𝑖𝑖

𝑛𝑛𝐵𝐵
𝑖𝑖=1 ,  ∑𝑛𝑛𝑖𝑖 =

∑ 𝑛𝑛𝑖𝑖
𝑛𝑛𝐵𝐵
𝑖𝑖=1  and the combinatory term is ignored (see section 1.1.6 for 

discussion). 
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𝑑𝑑L
𝑑𝑑p = 0 

solve for 𝑝𝑝 
𝑑𝑑L
𝑑𝑑p = ∑ki. p∑(ki)−1(1 − p)∑ni−∑ki − (∑ni − ∑ki)p∑ki(1 − p)∑ni−1−∑ki 

 
∑ki. p∑(ki)−1(1 − p)∑ni−∑ki = (∑ni − ∑ki)p∑ki(1 − p)−1+∑ni−∑ki 
  
∑ki. p−1 = (∑ni − ∑ki)(1 − p)−1 
  
(1 − p)

p
=
∑ni − ∑ki

∑ki
 

   

p =
∑ki
∑ni

 

 

MLE Point 
Estimates 

The MLE point estimate for p:  

p� =
∑ki
∑ni

 

Fisher 
Information 𝐼𝐼(𝑝𝑝) =

1
𝑝𝑝(1 − 𝑝𝑝) 

Confidence 
Intervals 

The confidence intervals for the binomial distribution parameter p is a 
controversial subject which is still debated. The Wilson interval is 
recommended for small and large 𝑛𝑛. (Brown et al. 2001) 
 

𝑝𝑝 =
𝑛𝑛�̂�𝑝 + 𝜅𝜅2 2⁄
𝑛𝑛 + 𝜅𝜅2

+
𝜅𝜅�𝜅𝜅2 + 4𝑛𝑛�̂�𝑝(1 − �̂�𝑝)

2(𝑛𝑛 + 𝜅𝜅2)  

 

𝑝𝑝 =
𝑛𝑛�̂�𝑝 + 𝜅𝜅2 2⁄
𝑛𝑛 + 𝜅𝜅2

−
𝜅𝜅�𝜅𝜅2 + 4𝑛𝑛�̂�𝑝(1 − �̂�𝑝)

2(𝑛𝑛 + 𝜅𝜅2)  

where 

𝜅𝜅 = Φ−1 �
𝛾𝛾 + 1

2 � 
 
It should be noted that most textbooks use the Wald interval (normal 
approximation) given below, however many articles have shown these 
estimates to be erratic and cannot be trusted. (Brown et al. 2001) 

𝑝𝑝 = �̂�𝑝 + 𝜅𝜅�
�̂�𝑝(1 − �̂�𝑝)

𝑛𝑛
 

 

𝑝𝑝 = �̂�𝑝 − 𝜅𝜅�
�̂�𝑝(1 − �̂�𝑝)

𝑛𝑛  

 
For a comparison of binomial confidence interval estimates the reader 
is referred to (Brown et al. 2001). The following webpage has links to 
online calculators which use many different methods. 
 http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval  

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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Bayesian 

Non-informative Priors for p given n,  𝝅𝝅(𝑯𝑯|𝒏𝒏)  
 (Yang and Berger 1998, p.6) 

Type Prior Posterior 

Uniform Proper 
Prior with limits 
𝑝𝑝 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Beta Distribution 

For a ≤ 𝑝𝑝 ≤ b 
𝑐𝑐.𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1 + 𝑘𝑘, 1 + 𝑛𝑛 − 𝑘𝑘) 

 
Otherwise  𝜋𝜋(𝑝𝑝) = 0 

Uniform Improper 
Proir with limits 
𝑝𝑝 ∈ [0,1] 

1 = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1,1) 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 1 + 𝑘𝑘, 1 + 𝑛𝑛 − 𝑘𝑘) 

Jeffrey’s Prior 
Reference Prior 

1

�𝑝𝑝(1 − 𝑝𝑝)
= 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 �𝑝𝑝;

1
2 ,

1
2� 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉 �𝑝𝑝;

1
2 + 𝑘𝑘,

1
2 + 𝑛𝑛 − 𝑘𝑘� 

when 𝑝𝑝 ∈ [0,1] 

MDIP 1.6186𝑝𝑝𝑝𝑝(1 − 𝑝𝑝)1−𝑝𝑝 Proper - No Closed Form 

Novick and Hall 𝑝𝑝−1(1 − 𝑝𝑝)−1 = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(0,0) 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 𝑘𝑘,𝑛𝑛 − 𝑘𝑘) 
when 𝑝𝑝 ∈ [0,1] 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior Parameters 

𝑝𝑝  
from 

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑝𝑝,𝑛𝑛) 
Binomial 𝑘𝑘 failures 

in 𝑛𝑛 trial Beta 𝛼𝛼𝑜𝑜,𝛽𝛽𝑜𝑜 𝛼𝛼 = 𝛼𝛼𝑜𝑜 + 𝑘𝑘 
β = βo + n − k 

Description , Limitations and Uses 

Example Five machines are measured for performance on demand. The 
machines can either fail or succeed in their application. The 
machines are tested for 10 demands with the following data for each 
machine: 
 

Machine/Trail 1 2 3 4 5 6 7 8 9 10 
1 F = 3 S = 7 
2 F=2 S=8 
3 F=2 S=8 
4 F=3 S=7 
5 F=2 S=8 
𝜇𝜇𝑖𝑖 𝑛𝑛�̂�𝑝 𝑛𝑛(1 − �̂�𝑝) 

 
Assuming machines are homogeneous estimate the parameter 𝑝𝑝:  
 
Using MLE: 

p� =
∑ki
∑ni

=
12
50 = 0.24 
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90% confidence intervals for 𝑝𝑝: 

𝜅𝜅 = Φ−1(0.95) = 1.64485 
 

𝑝𝑝𝑙𝑙𝑜𝑜𝑙𝑙𝑒𝑒𝑟𝑟 =
𝑛𝑛�̂�𝑝 + 𝜅𝜅2 2⁄
𝑛𝑛 + 𝜅𝜅2

−
𝜅𝜅�𝜅𝜅2 + 4𝑛𝑛�̂�𝑝(1 − �̂�𝑝)

2(𝑛𝑛 + 𝜅𝜅2) = 0.1557 

 

𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟 =
𝑛𝑛�̂�𝑝 + 𝜅𝜅2 2⁄
𝑛𝑛 + 𝜅𝜅2 +

𝜅𝜅�𝜅𝜅2 + 4𝑛𝑛�̂�𝑝(1 − �̂�𝑝)
2(𝑛𝑛 + 𝜅𝜅2) = 0.351 

 
A Bayesian point estimate using a uniform prior distribution 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(1,
1), with posterior  𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 13, 39) has a point estimate: 
 

�̂�𝑝 = E[𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑝𝑝; 13, 39)] =
13
52

= 0.25 
 
With 90% confidence interval using inverse Beta cdf: 
 

[𝐹𝐹𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎−1 (0.05) = 0.1579, 𝐹𝐹𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎−1 (0.95) = 0.3532]  
 
The probability of observing no failures in the next 10 trials with 
replacement is: 

𝑓𝑓(0; 10,0.25) = 0.0563 
 
The probability of observing less than 5 failures in the next 10 trials 
with replacement is: 

𝑓𝑓(0; 10,0.25) = 0.9803 
 

Characteristics  CDF Approximations. The Binomial distribution is one of the most 
widely used distributions throughout history. Although simple, the 
CDF function was tedious to calculate prior to the use of computers. 
As a result approximations using the Poisson and Normal distribution 
have been used. For details see ‘Related Distributions’. 
  
With Replacement. The Binomial distribution models probability of 
𝑘𝑘 successes in 𝑛𝑛 Bernoulli trials.  However, the 𝑘𝑘 successes can 
occur anywhere among the 𝑛𝑛 trials with 𝐶𝐶𝑘𝑘𝑛𝑛

  different combinations. 
Therefore the Binomial distribution assumes replacement. The 
equivalent distribution which assumes without replacement is the 
hypergeometric distribution.   
  
Symmetrical. The distribution is symmetrical when 𝑝𝑝 = 0.5. 
 
Compliment. 𝑓𝑓(𝑘𝑘;𝑛𝑛, 𝑝𝑝) = 𝑓𝑓(𝑛𝑛 − 𝑘𝑘;𝑛𝑛, 1 − 𝑝𝑝). Tables usually only 
provide values up to 𝑛𝑛/2 allowing the reader to calculate to 𝑛𝑛 using 
the compliment formula.  
 
Assumptions. The binomial distribution describes the behavior of a 
count variable K if the following conditions apply:  
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1. The number of observations n is fixed.  
2. Each observation is independent.  
3. Each observation represents one of two outcomes 

("success" or "failure").  
4. The probability of "success" is the same for each outcome.  

 
𝐾𝐾~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑛𝑛,𝑝𝑝) 

Convolution Property 
�Ki ~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(∑𝑛𝑛𝑖𝑖 , 𝑝𝑝) 

When 𝑝𝑝 is fixed. 
 

Applications Used to model independent repeated trials which have two 
outcomes. Examples used in Reliability Engineering are: 

• Number of independent components which fail, 𝑘𝑘, from a 
population, 𝑛𝑛 after receiving a shock. 

• Number of failures to start, 𝑘𝑘, from 𝑛𝑛 demands on a 
component. 

• Number of independent items defective, 𝑘𝑘, from a 
population of 𝑛𝑛 items. 
 

Resources Online: 
http://mathworld.wolfram.com/BinomialDistribution.html 
http://en.wikipedia.org/wiki/Binomial_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (web calc) 
 
Books: 
Collani, E.V. & Dräger, K., 2001. Binomial distribution handbook for 
scientists and engineers, Birkhäuser.   
 
Johnson, N.L., Kemp, A.W. & Kotz, S., 2005. Univariate Discrete 
Distributions 3rd ed., Wiley-Interscience.   

Relationship to Other Distributions 

Bernoulli 
Distribution 
 
𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(k′; p) 

The Binomial distribution counts the number of successes 𝑘𝑘 in 𝑛𝑛 
independent observations of a Bernoulli process. 
 
Let  

𝐾𝐾𝑖𝑖~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(k′i;𝑝𝑝)             𝑉𝑉𝑛𝑛𝑑𝑑         𝑌𝑌 = �𝐾𝐾𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Then 
Y~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(∑k′i;𝑛𝑛, 𝑝𝑝)    where  𝑘𝑘 ∈ {1, 2, … ,𝑛𝑛} 

 
Special Case: 

𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖(𝑘𝑘;𝑝𝑝) = 𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘; 𝑝𝑝|𝑛𝑛 = 1) 

http://mathworld.wolfram.com/BinomialDistribution.html
http://en.wikipedia.org/wiki/Binomial_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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Hypergeometric 
Distribution 
 

𝐻𝐻𝑦𝑦𝑝𝑝𝑒𝑒𝑟𝑟𝐺𝐺𝑒𝑒𝐶𝐶𝑚𝑚 
(𝑘𝑘;𝑛𝑛,𝑚𝑚,𝑁𝑁) 

The hypergeometric distribution models probability of 𝑘𝑘 successes in 
𝑛𝑛 Bernoulli trials from a population 𝑁𝑁, with 𝑚𝑚 successors without 
replacement. 

𝑓𝑓(𝑘𝑘; 𝑛𝑛,𝑚𝑚,𝑁𝑁) 
 
Limiting Case for 𝑛𝑛 ≫ 𝑘𝑘 and 𝑝𝑝 not near 0 or 1: 

lim𝑛𝑛→∞𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛, 𝑝𝑝 =
𝑚𝑚
𝑁𝑁) = 𝐻𝐻𝑦𝑦𝑝𝑝𝑒𝑒𝑟𝑟𝐺𝐺𝑒𝑒𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛,𝑚𝑚,𝑁𝑁) 

Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑡𝑡;𝜇𝜇,𝜎𝜎2) 

Limiting Case for constant 𝑝𝑝: 
lim𝑛𝑛→∞
𝑝𝑝=𝑝𝑝

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑛𝑛, 𝑝𝑝) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�k�µ = n𝑝𝑝,𝜎𝜎2 = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)� 

 
The Normal distribution can be used as an approximation of the 
Binomial distribution when 𝑛𝑛𝑝𝑝 ≥ 10 and 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝) ≥ 10. 
 

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑝𝑝,𝑛𝑛) ≈ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝑘𝑘 + 0.5�𝜇𝜇 = 𝑛𝑛𝑝𝑝,𝜎𝜎2 = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)� 

Poisson 
Distribution 
 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘;𝜇𝜇) 

Limiting Case for constant 𝑛𝑛𝑝𝑝: 
lim𝑛𝑛→∞
n𝑝𝑝=𝜇𝜇

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛, 𝑝𝑝) = 𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k;µ = n𝑝𝑝) 

 
The Poisson distribution is the limiting case of the Binomial 
distribution when 𝑛𝑛 is large but the ratio of 𝑛𝑛𝑝𝑝 remains constant. 
Hence the Poisson distribution models rare events. 
 
The Poisson distribution can be used as an approximation to the 
Binomial distribution when 𝑛𝑛 ≥  20 and 𝑝𝑝 ≤  0.05, or if 𝑛𝑛 ≥  100 and 
𝑛𝑛𝑝𝑝 ≤  10. 
 
The Binomial is expressed in terms of the total number of a 
probability of success, 𝑝𝑝, and trials, 𝑁𝑁. Where a Poisson distribution 
is expressed in terms of a success rate and does not need to know 
the total number of trials.   
 
The derivation of the Poisson distribution from the binomial can be 
found at http://mathworld.wolfram.com/PoissonDistribution.html.   
 
This interpretation can also be used to understand the conditional 
distribution of a Poisson random variable: 
Let  

𝐾𝐾1,𝐾𝐾2~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(µ) 
Given 

𝑛𝑛 = 𝐾𝐾1 + 𝐾𝐾2 = 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 𝐶𝐶𝑓𝑓 𝑒𝑒𝐶𝐶𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 
Then 

𝐾𝐾1|n~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚�k; n, p =
µ1

µ1 + µ2
� 

Multinomial 
Distribution 
𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑(𝐤𝐤|n,𝐩𝐩) 

Special Case: 
𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑=2(𝐤𝐤|n,𝐩𝐩) = 𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑛𝑛, 𝑝𝑝) 

http://mathworld.wolfram.com/PoissonDistribution.html
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5.3. Poisson Discrete Distribution 
 
Probability Density Function - f(k) 

 
Cumulative Density Function - F(k) 

 
Hazard Rate - h(k) 
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Parameters & Description 

Parameters 𝜇𝜇 𝜇𝜇 > 0 

Shape Parameter: The value of 𝜇𝜇  is 
the expected number of events per 
time period or other physical 
dimensions. If the Poisson distribution 
is modeling failure events, then 𝜇𝜇 = 𝜆𝜆𝑡𝑡 
is the average number of failures that 
would occur in the space 𝑡𝑡. In this 
case 𝑡𝑡 is fixed and 𝜆𝜆 becomes the 
distribution parameter. Some texts 
use the symbol 𝜌𝜌. 

Random Variable 𝑘𝑘 is an integer,    𝑘𝑘 ≥  0 

Distribution Formulas 

PDF 𝑓𝑓(𝑘𝑘) =
𝜇𝜇𝑘𝑘

k! 𝑒𝑒
−µ =

(𝜆𝜆𝑡𝑡)𝑘𝑘

k! 𝑒𝑒−λt 

CDF 

𝐹𝐹(𝑘𝑘) = e−µ�
µj

j!

k

j=0

=
Γ(𝑘𝑘 + 1, 𝜇𝜇)

𝑘𝑘!   

= 𝐹𝐹𝜒𝜒2(2𝜇𝜇, 2𝑘𝑘 + 2) 
 
Where 𝐹𝐹𝜒𝜒2(𝑥𝑥|𝐶𝐶) is the Chi-square CDF.  
 
When 𝜇𝜇 > 10 the 𝐹𝐹(𝑘𝑘) can be approximated by a normal distribution: 

𝐹𝐹(𝑘𝑘) ≅ Φ�
𝑘𝑘 + 0.5 − 𝜇𝜇

√𝜇𝜇
� 

Reliability R(k) = 1 − F(k) 

Hazard Rate ℎ(𝑘𝑘) = �1 +
k!
µ �eµ − 1 −�

µj

j!

k

j=1

��

−1

 

(Gupta et al. 1997) 

Properties and Moments 

Median See 100α% Percentile Function when 
𝛼𝛼 =  0.5. 

Mode ⌊𝜇𝜇⌋ 
where ⌊𝜇𝜇⌋ is the floor function2 

Mean - 1st Raw Moment 𝜇𝜇 

Variance - 2nd Central Moment 𝜇𝜇 

                                                           
2 ⌊𝜇𝜇⌋ = is the floor function (largest integer not greater than 𝜇𝜇)  
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Skewness - 3rd Central Moment 1/�µ 

Excess kurtosis - 4th Central Moment 1/µ 

Characteristic Function exp{µ�eik − 1�} 

100α% Percentile Function Numerically solve for 𝑘𝑘 (which is not 
arduous for 𝜇𝜇 ≤ 10): 

𝑘𝑘𝛼𝛼 = 𝐹𝐹−1(𝛼𝛼) 
 
For 𝑘𝑘 > 10 the normal approximation may 
be used: 
 

kα ≅ ��µΦ−1(𝛼𝛼) + 𝜇𝜇 − 0.5� 
 

Parameter Estimation 

Maximum Likelihood Estimates 

Likelihood 
Functions 

For complete data: 

𝐿𝐿(𝜇𝜇|𝐸𝐸) = �
𝜇𝜇𝑘𝑘𝑖𝑖𝐹𝐹

kiF!
𝑒𝑒−µ

n

i=1���������
known k

 

 
where 𝑛𝑛 is the number of poisson processes. 

Log-Likelihood 
Function Λ = −nµ + �{𝑘𝑘𝑖𝑖 ln(𝜇𝜇) − ln (𝑘𝑘𝑖𝑖!)}

n

i=1

 
���������������������

known k

 

∂Λ
∂µ = 0 ∂Λ

∂µ = −n +
1
µ�𝑘𝑘𝑖𝑖

n

i=1���������
known k

= 0 

MLE Point 
Estimates 

For complete data solving ∂Λ
∂µ

= 0 gives: 

µ� =
1
𝑛𝑛 .�𝑘𝑘𝑖𝑖

n

i=1

   𝐶𝐶𝑟𝑟  λ� =
1
𝑡𝑡𝑛𝑛 .�𝑘𝑘𝑖𝑖

n

i=1

    

Note that in this context: 
t     = the unit of time for which the rate, 𝜆𝜆 is being measured. 
𝑛𝑛 = the number of Poisson processes for which the exact number of 
failures, k, was known. 
𝑘𝑘𝑖𝑖  = the number of failures that occurred within the ith Poisson process.  
 
When there is only one Poisson process this reduces to: 

µ� = 𝑘𝑘    𝐶𝐶𝑟𝑟    λ� =
𝑘𝑘
𝑡𝑡  

For censored data numerical methods are needed to maximize the log-
likelihood function.  
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Fisher 
Information 𝐼𝐼(𝜆𝜆) =

1
𝜆𝜆 

100𝛾𝛾% 
Confidence 
Interval  
 
(complete data 
only) 

 𝜆𝜆lower - 
2 Sided 

𝜆𝜆upper - 
2 Sided 

Conservative two 
sided confidence 
intervals. 

𝜒𝜒
�1−γ2 �
2 (2∑𝑘𝑘𝑖𝑖)

2𝑡𝑡𝑛𝑛  
𝜒𝜒
�1+γ2 �
2 (2∑𝑘𝑘𝑖𝑖 + 2)

2𝑡𝑡𝑛𝑛  

When 𝑘𝑘 is large 
(𝑘𝑘 > 10) two sided 
intervals 

λ� − Φ−1 �
1 + 𝛾𝛾

2 ��
�̂�𝜆
𝑡𝑡𝑛𝑛 λ� + Φ−1 �

1 + 𝛾𝛾
2 ��

�̂�𝜆
𝑡𝑡𝑛𝑛 

(Nelson 1982, p.201) Note: The first confidence intervals are 
conservative in that at least 100𝛾𝛾%. Exact confidence intervals cannot 
be easily achieved for discrete distributions.   

Bayesian 

Non-informative Priors 𝝅𝝅(𝝀𝝀) in known time interval 𝑡𝑡 

Type Prior Posterior 

Uniform Proper 
Prior with limits 
𝜆𝜆 ∈ [𝑉𝑉, 𝑏𝑏] 

1
𝑏𝑏 − 𝑉𝑉 Truncated Gamma Distribution 

For a ≤ λ ≤ b 
𝑐𝑐.𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + k, t) 

 
Otherwise  𝜋𝜋(𝜆𝜆) = 0 

Uniform Improper 
Prior with limits 
𝜆𝜆 ∈ [0,∞) 

1 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1,0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 1 + k, t)  

Jeffrey’s Prior 1
√𝜆𝜆

∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1
2
, 0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 12 + k, t) 

when 𝜆𝜆 ∈ [0,∞) 

Novick and Hall 1
𝜆𝜆 ∝ 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(0,0) 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; k, t) 

when 𝜆𝜆 ∈ [0,∞) 

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior Parameters 

𝜆𝜆 
from 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘;µ) 
Exponential 

𝑛𝑛𝐹𝐹 failures 
in 𝑡𝑡𝑇𝑇 unit of 

time 
Gamma 𝑘𝑘0,Λ0 𝑘𝑘 = 𝑘𝑘𝑜𝑜 + 𝑛𝑛𝐹𝐹 

Λ = Λ𝑜𝑜 + 𝑡𝑡𝑇𝑇 

Description , Limitations and Uses 

Example Three vehicle tires were run on a test area for 1000km have 
punctures at the following distances: 
   Tire 1:  No punctures 
   Tire 2:  400km, 900km 
   Tire 3:  200km 
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Punctures can be modeled as a renewal process with perfect repair 
and an inter-arrival time modeled by an exponential distribution. Due 
to the Poisson distribution being homogeneous in time, the test from 
multiple tires can be combined and considered a test of one tire with 
multiple renewals. See example in section 1.1.6. 
 
Total time on test is 3 × 1000 = 3000km. Total number of failures is 
3. Therefore using MLE the estimate of 𝜆𝜆: 
 

�̂�𝜆 =
k
𝑡𝑡𝑇𝑇

=
3

3000 = 1E-3 

 
With 90% confidence interval (conservative): 

�
𝜒𝜒(0.05)
2 (6)
6000 = 0.272𝐸𝐸-3,

𝜒𝜒(0.95)
2 (8)
6000 = 2.584𝐸𝐸-3�  

 
A Bayesian point estimate using the Jeffery non-informative 
improper prior 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(1

2
, 0), with posterior 𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 3.5, 3000) has 

a point estimate: 

�̂�𝜆 = E[𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆; 3.5, 3000)] =
3.5

3000
= 1.16̇E− 3 

 
With 90% confidence interval using inverse Gamma cdf: 

[𝐹𝐹𝐺𝐺−1(0.05) = 0.361𝐸𝐸-3, 𝐹𝐹𝐺𝐺−1(0.95) = 2.344𝐸𝐸-3]  
 

Characteristics  The Poisson distribution is also known as the Rare Event distribution.   
 
If the following assumptions are met than the process follows a 
Poisson distribution: 

• The chance of two simultaneous events is negligible or 
impossible (such as renewal of a single component); 

• The expected value of the random number of events in a 
region is proportional to the size of the region. 

• The random number of events in non-overlapping regions 
are independent. 

 
μ  characteristics: 

• 𝜇𝜇 is the expected number of events for the unit of time being 
measured.  

• When the unit of time varies μ can be transformed into a 
rate and time measure, 𝜆𝜆𝑡𝑡. 

• For 𝜇𝜇 ≲ 10 the distribution is skewed to the right. 
• For 𝜇𝜇 ≳ 10 the distribution approaches a normal distribution 

with a 𝜇𝜇 = 𝜇𝜇 and 𝜎𝜎 = √𝜇𝜇. 
 

𝐾𝐾~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝜇𝜇) 
Convolution property 

𝐾𝐾1 + 𝐾𝐾2 +  … + 𝐾𝐾𝑛𝑛~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘;∑𝜇𝜇𝑖𝑖) 
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Applications Homogeneous Poisson Process (HPP). The Poisson distribution 
gives the distribution of exactly k failures occurring in a HPP. See 
relation to exponential and gamma distributions.   
 
Renewal Theory. Used in renewal theory as the counting function 
and may model non-homogeneous (aging) components by using a 
time dependent failure rate, 𝜆𝜆 (𝑡𝑡).  
 
Binomial Approximation. Used to model the Binomial distribution 
when the number of trials is large and μ remains moderate. This can 
greatly simplify Binomial distribution calculations.  
 
Rare Event. Used to model rare events when the number of trials is 
large compared to the rate at which events occur. 

Resources Online: 
http://mathworld.wolfram.com/PoissonDistribution.html 
http://en.wikipedia.org/wiki/Poisson_distribution 
http://socr.ucla.edu/htmls/SOCR_Distributions.html (interactive web 
calculator) 

 
Books: 
Haight, F.A., 1967. Handbook of the Poisson distribution [by] Frank 
A. Haight, New York,: Wiley.   
 
Nelson, W.B., 1982. Applied Life Data Analysis, Wiley-Interscience.   
 
Johnson, N.L., Kemp, A.W. & Kotz, S., 2005. Univariate Discrete 
Distributions 3rd ed., Wiley-Interscience.   

Relationship to Other Distributions 

Exponential 
Distribution 
 

𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Let  
𝐾𝐾~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k;µ = 𝜆𝜆𝑡𝑡) 

Given 
𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝐾𝐾 + 𝑇𝑇𝐾𝐾+1 … 

Then 
𝑇𝑇1, T2 … ~𝐸𝐸𝑥𝑥𝑝𝑝(t; 𝜆𝜆) 

 
The time between each arrival of T is exponentially distributed.  
 
Special Cases: 

𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k; 𝜆𝜆𝑡𝑡|𝑘𝑘 = 1) = 𝐸𝐸𝑥𝑥𝑝𝑝(𝑡𝑡; 𝜆𝜆) 

Gamma 
Distribution 
 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘|𝜆𝜆) 

Let  
𝑇𝑇1 …𝑇𝑇𝑘𝑘~𝐸𝐸𝑥𝑥𝑝𝑝(𝜆𝜆)           𝑉𝑉𝑛𝑛𝑑𝑑           𝑇𝑇𝑡𝑡 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑘𝑘 

Then 
𝑇𝑇𝑡𝑡~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑘𝑘, 𝜆𝜆) 

The Poisson distribution is the probability that exactly 𝑘𝑘 failures have 
been observed in time 𝑡𝑡. This is the probability that 𝑡𝑡 is between 𝑇𝑇𝑘𝑘 
and 𝑇𝑇𝑘𝑘+1. 
 

http://mathworld.wolfram.com/PoissonDistribution.html
http://en.wikipedia.org/wiki/Poisson_distribution
http://socr.ucla.edu/htmls/SOCR_Distributions.html
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𝑓𝑓𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛(𝑘𝑘; 𝜆𝜆𝑡𝑡) = � 𝑓𝑓𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡; 𝑥𝑥, 𝜆𝜆)𝑑𝑑𝑥𝑥
𝑘𝑘+1

𝑘𝑘
 

= 𝐹𝐹𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡;𝑘𝑘 + 1,𝜆𝜆) − 𝐹𝐹𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑡𝑡;𝑘𝑘, 𝜆𝜆) 
 
where 𝑘𝑘 is an integer. 

Binomial 
Distribution 
 
𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑝𝑝,𝑁𝑁) 

Limiting Case for constant 𝑛𝑛𝑝𝑝: 
lim𝑛𝑛→∞
n𝑝𝑝=𝜇𝜇

𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘;𝑛𝑛,𝑝𝑝) = 𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(k|µ = n𝑝𝑝) 

 
The Poisson distribution is the limiting case of the Binomial 
distribution when 𝑛𝑛 is large but the ratio of 𝑛𝑛𝑝𝑝 remains constant. 
Hence the Poisson distribution models rare events. 
 
The Poisson distribution can be used as an approximation to the 
Binomial distribution when 𝑛𝑛 ≥  20 and 𝑝𝑝 ≤  0.05, or if 𝑛𝑛 ≥  100 and 
𝑛𝑛𝑝𝑝 ≤  10. 
 
The Binomial is expressed in terms of the total number of a 
probability of success, 𝑝𝑝, and trials, 𝑁𝑁. Where a Poisson distribution 
is expressed in terms of a success rate and does not need to know 
the total number of trials.   
 
The derivation of the Poisson distribution from the binomial can be 
found at http://mathworld.wolfram.com/PoissonDistribution.html.   
 
This interpretation can also be used to understand the conditional 
distribution of a Poisson random variable: 
Let  

𝐾𝐾1,𝐾𝐾2~𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(µ) 
Given 

𝑛𝑛 = 𝐾𝐾1 + 𝐾𝐾2 = 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 𝐶𝐶𝑓𝑓 𝑒𝑒𝐶𝐶𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 
Then 

𝐾𝐾1|n~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚�k; n�p = µ1
µ1 + µ2

� 

Normal 
Distribution 
 
𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑘𝑘|𝜇𝜇′,𝜎𝜎) 

lim
𝜇𝜇→∞

𝐹𝐹𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛(𝑘𝑘;𝜇𝜇) = 𝐹𝐹𝑁𝑁𝑜𝑜𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙(𝑘𝑘;𝜇𝜇′ = 𝜇𝜇,𝜎𝜎2 = 𝜇𝜇) 

 
This is a good approximation when 𝜇𝜇 > 1000. When 𝜇𝜇 > 10 the same 
approximation can be made with a correction: 
 

lim
𝜇𝜇→∞

𝐹𝐹𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛(𝑘𝑘;𝜇𝜇) = 𝐹𝐹𝑁𝑁𝑜𝑜𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙(𝑘𝑘; 𝜇𝜇′ = 𝜇𝜇 − 0.5,𝜎𝜎2 = 𝜇𝜇) 

Chi-square 
Distribution 

𝜒𝜒2(𝑡𝑡|𝐶𝐶) 

 
𝑃𝑃𝐶𝐶𝑖𝑖𝑠𝑠(𝑘𝑘|𝜇𝜇) = 𝜒𝜒2(𝑥𝑥 = 2𝜇𝜇, 𝐶𝐶 = 2𝑘𝑘 + 2) 

 

http://mathworld.wolfram.com/PoissonDistribution.html
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6. Bivariate and Multivariate 
Distributions  
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6.1. Bivariate Normal Continuous 
Distribution 

Probability Density Function - f(x,y) 

 
 𝜎𝜎𝑖𝑖 > 𝜎𝜎𝑦𝑦 𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑦𝑦 𝜎𝜎𝑖𝑖 < 𝜎𝜎𝑦𝑦 

𝜌𝜌 > 0 

 
0𝑜𝑜 < 𝜃𝜃 < 45𝑜𝑜 

 

 
𝜃𝜃 = 45𝑜𝑜 

 

 
45𝑜𝑜 < 𝜃𝜃 < 90𝑜𝑜 

𝜌𝜌 = 0 

 
𝜃𝜃 = 0𝑜𝑜 

 

 
𝜃𝜃 = 45𝑜𝑜 

 

 
𝜃𝜃 = 0𝑜𝑜 

 

𝜌𝜌 < 0 

 
135𝑜𝑜 < 𝜃𝜃 < 180𝑜𝑜 

 
𝜃𝜃 = 45𝑜𝑜 

 
90𝑜𝑜 < 𝜃𝜃 < 135𝑜𝑜 

Adapted from (Kotz et al. 2000, p.256)  
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Parameters & Description 

Parameters 

𝜇𝜇𝑖𝑖 , 𝜇𝜇𝑦𝑦  −∞ < µj <  ∞ 
𝑗𝑗 ∈ {𝑥𝑥,𝑦𝑦} 

Location parameter: The 
mean of each random 
variable.   

𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑦𝑦  𝜎𝜎𝑗𝑗 > 0 
𝑗𝑗 ∈ {𝑥𝑥,𝑦𝑦} 

Scale parameter: The 
standard deviation of each 
random variable.   

𝜌𝜌  −1 ≤ 𝜌𝜌 ≤ 1 

Correlation Coefficient: 
The correlation between 
the two random variables. 

𝜌𝜌 = 𝑐𝑐𝐶𝐶𝑟𝑟𝑟𝑟(𝑋𝑋,𝑌𝑌) =
𝑐𝑐𝐶𝐶𝐶𝐶[𝑋𝑋𝑌𝑌]
𝜎𝜎𝑖𝑖𝜎𝜎𝑦𝑦

 

=
𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑖𝑖)(𝑌𝑌 − 𝜇𝜇𝑦𝑦)]

𝜎𝜎𝑖𝑖𝜎𝜎𝑦𝑦
 

 

Limits −∞ < x <  ∞    𝑉𝑉𝑛𝑛𝑑𝑑     −∞ < y <  ∞ 

Distribution Formulas 

PDF 

 

𝑓𝑓(x, y) =
1

2𝜋𝜋σxσy�1− 𝜌𝜌2
exp �

zx2 + zy2 − 2𝜌𝜌zxzy
−2(1 − 𝜌𝜌2) � 

=  𝜙𝜙(𝑥𝑥)𝜙𝜙(𝑦𝑦|𝑥𝑥) 

= 𝜙𝜙(𝑥𝑥)𝜙𝜙 �
𝑦𝑦 − 𝜌𝜌𝑥𝑥
�1 − 𝜌𝜌2

� =  𝜙𝜙(𝑦𝑦)𝜙𝜙 �
𝑥𝑥 − 𝜌𝜌𝑦𝑦
�1 − 𝜌𝜌2

� 

 
Where 𝜙𝜙 is the standard normal distribution and: 

zj =
x − µj
σj

         𝑗𝑗 ∈ {𝑥𝑥, 𝑦𝑦} 

 

Marginal PDF 

𝑓𝑓(𝑥𝑥) = � 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑦𝑦
∞

−∞
 

=
1

𝜎𝜎𝑖𝑖√2𝜋𝜋
exp � −

1
2

(zx)2� 

= 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖)   
 

𝑓𝑓(𝑦𝑦) = � 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑥𝑥
∞

−∞
 

=
1

𝜎𝜎𝑦𝑦√2𝜋𝜋
exp � −

1
2 �zy�

2� 

= 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇𝑦𝑦 ,𝜎𝜎𝑦𝑦� 

Conditional PDF 

𝑓𝑓(𝑥𝑥|𝑦𝑦) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇𝑖𝑖|𝑦𝑦 = 𝜇𝜇𝑖𝑖 + 𝜌𝜌 �
𝜎𝜎𝑖𝑖
𝜎𝜎𝑦𝑦
� �𝑦𝑦 − 𝜇𝜇𝑦𝑦�,   𝜎𝜎𝑖𝑖|𝑦𝑦

2 = 𝜎𝜎𝑖𝑖2(1 − 𝜌𝜌2)�   

𝑓𝑓(𝑦𝑦|𝑥𝑥) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇𝑦𝑦|𝑖𝑖 = 𝜇𝜇𝑦𝑦 + 𝜌𝜌 �
𝜎𝜎𝑦𝑦
𝜎𝜎𝑖𝑖
� (𝑦𝑦 − 𝜇𝜇𝑖𝑖),   𝜎𝜎𝑦𝑦|𝑖𝑖

2 = 𝜎𝜎𝑦𝑦2(1 − 𝜌𝜌2)� 

 

CDF 𝐹𝐹(x, y) =
1

2𝜋𝜋σxσy�1 − ρ2
� � exp �

zu2 + zv2 − 2ρzuzv
−2(1 − ρ2) �

y

−∞

x

−∞
du dv 
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where 
zj =

x − µj
σj

 

 

Reliability 

𝑅𝑅(x, y) =
1

2𝜋𝜋σxσy�1 − ρ2
� � exp �

zu2 + zv2 − 2ρzuzv
2(1 − ρ2) �

∞

y

∞

x
du dv 

where 
zj =

x − µj
σj

 

Properties and Moments 

Median �
𝜇𝜇𝑖𝑖
𝜇𝜇𝑦𝑦� 

Mode �
𝜇𝜇𝑖𝑖
𝜇𝜇𝑦𝑦� 

Mean - 1st Raw Moment 𝐸𝐸 �𝑋𝑋𝑌𝑌� = �
𝜇𝜇𝑖𝑖
𝜇𝜇𝑦𝑦� 

 
The mean of the marginal distributions is: 

𝐸𝐸[𝑋𝑋] = 𝜇𝜇𝑖𝑖 
𝐸𝐸[𝑌𝑌] = 𝜇𝜇𝑦𝑦 

 
The mean of the conditional distributions gives the 
following lines (also called the regression lines): 

E(X|Y = y) = µx + ρ.
σx
σy

(y − µy) 

E(Y|X = x) = µy + ρ.
σy
σx

(y − µx) 

 

Variance - 2nd Central Moment 
𝐶𝐶𝐶𝐶𝐶𝐶 �𝑋𝑋𝑌𝑌� = � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
� 

 
Variance of marginal distributions: 

𝑉𝑉𝑉𝑉𝑟𝑟(X) = σx2 
𝑉𝑉𝑉𝑉𝑟𝑟(Y) = σy2 

 
Variance of conditional distributions: 

𝑉𝑉𝑉𝑉𝑟𝑟(X|Y = y) = σx2(1 − ρ2) 
𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) = σy2(1 − ρ2)   

 

100α% Percentile Function An ellipse containing 100α % of the distribution is 
(Kotz et al. 2000, p.254): 
 

(zx
2 + zy2 − 2ρzxzy)
−2(1 − 𝜌𝜌2) = ln (1 − 𝛼𝛼) 
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where 
zj =

x − µj
σj

         𝑗𝑗 ∈ {𝑥𝑥, 𝑦𝑦} 

 
For the standard bivariate normal: 
 

x2 + y2 − 2ρxy
−2(1 − ρ2) =  ln (1 − 𝛼𝛼) 

 

Parameter Estimation 

Maximum Likelihood Function 

MLE Point 
Estimates 

When there is only complete failure data the MLE estimates can be given 
as (Kotz et al. 2000, p.294): 

𝜇𝜇𝑖𝑖� =
1

nF
�𝑥𝑥𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

      σx2� =
1

nF
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖�)2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

𝜇𝜇𝑦𝑦� =
1

nF
�𝑦𝑦𝑖𝑖

𝑛𝑛𝐹𝐹

𝑖𝑖=1

      σy2� =
1

nF
��𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦��2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

𝜌𝜌� =
1

𝜎𝜎𝑖𝑖�𝜎𝜎𝑦𝑦�nF
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦�
𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

 
If one or more of the variables are known, different estimators are given in 
(Kotz et al. 2000, pp.294-305).  
 
A correction factor of -1 can be introduced to the 𝜎𝜎2�  to give the unbiased 
estimators: 

σx2� =
1

nF − 1�
(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖�)2

𝑛𝑛𝐹𝐹

𝑖𝑖=1

            σy2� =
1

nF − 1��𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦��2
𝑛𝑛𝐹𝐹

𝑖𝑖=1

 

 
 

Bayesian 

Non-informative Priors:  A complete coverage of numerous reference prior distributions 
with different parameter ordering is contained in (Berger & Sun 2008).  
 
For a summary of the general Bayesian priors and conjugates see the multivariate 
normal distribution.  

Description , Limitations and Uses 

Example The accuracy of a cutting machine used in manufacturing is desired to 
be measured. 5 cuts at the required length are made. The lengths and 
room temperature were measured as: 

7.436, 10.270, 10.466, 11.039, 11.854 𝑚𝑚𝑚𝑚 
19.51, 21.23, 21.41, 22.78, 26.78 oC 
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MLE estimates are: 

𝜇𝜇𝑖𝑖� =
∑ xi

n = 10.213 

𝜇𝜇𝑇𝑇� =
∑ ti

n = 22.342 
 

𝜎𝜎𝑖𝑖2� =
∑(xi − 𝜇𝜇𝐿𝐿�)2

n − 1 = 2.7885 

𝜎𝜎𝑇𝑇2� =
∑(ti − 𝜇𝜇𝑇𝑇�)2

n − 1 = 7.5033 
 

𝜌𝜌� =
1

𝜎𝜎𝑖𝑖�𝜎𝜎𝑇𝑇�nF
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑡𝑡𝑖𝑖 − 𝜇𝜇𝑇𝑇)
𝑛𝑛𝐹𝐹

𝑖𝑖=1

= 0.1454 

 
If you know the temperature is 24 oC what is the likely cutting distance 
distribution? 
 

𝑓𝑓(𝑥𝑥|𝑡𝑡 = 24) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇𝑖𝑖|𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜌𝜌 �
𝜎𝜎𝑖𝑖
𝜎𝜎𝑡𝑡
� (𝑡𝑡 − 𝜇𝜇𝑇𝑇),   𝜎𝜎𝑖𝑖|𝑡𝑡

2 = 𝜎𝜎𝑖𝑖2(1 − 𝜌𝜌2)�   

𝑓𝑓(𝑥𝑥|𝑡𝑡 = 24) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(10.303,   2.730)   
 

Characteristic Also known as Binormal Distribution. 
 
Let U, V and W be three independent normally distributed random 
variables. Then let: 

𝑋𝑋 = 𝑈𝑈 + 𝑉𝑉 
𝑌𝑌 = 𝑉𝑉 + 𝑊𝑊 

 
Then (𝑋𝑋,𝑌𝑌) has a bivariate normal distribution. (Balakrishnan & Lai 
2009, p.483) 
 
Independence. If 𝑋𝑋 and 𝑌𝑌 are jointly normal random variables, then 
they are independent when 𝜌𝜌 = 0. This gives a contour plot of 𝑓𝑓(𝑥𝑥,𝑦𝑦) 
with concentric circles around the origin. When given a value on the 𝑦𝑦 
axis it does not assist in estimating the value on the 𝑥𝑥 axis and therefore 
are independent. When 𝑋𝑋 and 𝑌𝑌 are independent, the pdf reduces to: 

𝑓𝑓(x, y) =
1

2𝜋𝜋σxσy
exp �−

zx2 + zy2

2 � 

 
 
Correlation Coefficient 𝝆𝝆. (Yang et al. 2004, p.49)  

- 𝝆𝝆 > 0. When X increases then Y also tends to increase. When 
𝜌𝜌 = 1 X and Y have a perfect positive linear relationship such 
that 𝑌𝑌 = 𝑐𝑐 + 𝑚𝑚𝑋𝑋 where 𝑚𝑚 is positive.  

- 𝝆𝝆 < 0. When X increases then Y also tends to decrease. When 
𝜌𝜌 = −1 X and Y have a perfect negative linear relationship 
such that 𝑌𝑌 = 𝑐𝑐 + 𝑚𝑚𝑋𝑋 where 𝑚𝑚 is negative. 

- 𝝆𝝆 = 𝟎𝟎. Increases or decreases in X have no affect on Y. X and 
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Y are independent.  
 
Ellipse Axis. (Kotz et al. 2000, p.254) The slope of the main axis from 
the x-axis is given as: 
 

𝜃𝜃 =
1
2
𝑡𝑡𝑉𝑉𝑛𝑛−1 �

2𝜌𝜌𝜎𝜎𝑖𝑖𝜎𝜎𝑦𝑦
𝜎𝜎𝑖𝑖2 − 𝜎𝜎𝑦𝑦2

� 

 
If  𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑦𝑦  for positive 𝜌𝜌 the main axis of the ellipse is 45o from the x-
axis. For negative 𝜌𝜌 the main axis of the ellipse is -45o from the x-axis.  
 
 
Circular Normal Density Function. (Kotz et al. 2000, p.255)  When 
𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑦𝑦  and 𝜌𝜌 = 0 the bivariate distribution is known as a circular 
normal density function.  
 
Elliptical Normal Distribution (Kotz et al. 2000, p.255). If 𝜌𝜌 = 0 and 
𝜎𝜎𝑖𝑖 ≠ 𝜎𝜎𝑦𝑦 then the distribution may be known as an elliptical normal 
distribution.  
 
Standard Bivariate Normal Distribution. Occurs when 𝜇𝜇 = 0 and 𝜎𝜎 =
1. For positive ρ the main axis of the ellipse is 45o from the x-axis. For 
negative ρ the main axis of the ellipse is -45o from the x-axis.   
 

𝑓𝑓(x, y) =
1

2𝜋𝜋�1− ρ2
exp �−

x2 + y2 − 2ρxy
2(1 − ρ2) � 

 
Mean / Median / Mode: 
As per the univariate distributions the mean, median and mode are 
equal.  
 
Matrix Form. The bivariate distribution may be written in matrix form 
as: 

𝑿𝑿 = �𝑋𝑋1𝑋𝑋2
�      𝝁𝝁 = �

𝜇𝜇1
𝜇𝜇2�    𝚺𝚺 = � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
�     

when  𝑿𝑿 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚2(𝝁𝝁,𝚺𝚺) 
 

𝑓𝑓(𝐱𝐱) =
1

2𝜋𝜋�|𝚺𝚺|
exp �−

1
2

(𝐱𝐱 − 𝛍𝛍)T𝚺𝚺−1(𝐱𝐱 − 𝛍𝛍)� 

 
Where |𝚺𝚺| is the determinant of 𝚺𝚺. This is the form used in multivariate 
normal distribution. 
 
The following properties are given in matrix form: 
 
Convolution Property 
Let                  𝑿𝑿 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝝁𝝁𝒙𝒙,𝚺𝚺𝐱𝐱)          𝒀𝒀 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝝁𝝁𝒚𝒚,𝚺𝚺𝐲𝐲�      
Where                            𝑿𝑿 ⊥ 𝒀𝒀 (independent) 
Then                      𝑿𝑿 + 𝒀𝒀~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝝁𝝁𝒙𝒙 + 𝝁𝝁𝒚𝒚,𝚺𝚺𝒙𝒙 + 𝚺𝚺𝒚𝒚� 
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Note if X and Y are dependent then 𝑿𝑿 + 𝒀𝒀 may not be even be normally 
distributed.(Novosyolov 2006) 
 
Scaling Property 
Let                                         𝒀𝒀 = 𝑨𝑨𝑿𝑿 + 𝒃𝒃                                  Y is a p x 
1 matrix 

                                                                                b is a p x 1 matrix 
Then                                     𝒀𝒀~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝑨𝑨𝝁𝝁 + 𝒃𝒃,𝑨𝑨𝚺𝚺𝑨𝑨𝑻𝑻)                      A is a p x 
2 matrix 
 
Marginalize Property: 

Let                             �𝑋𝑋1𝑋𝑋2
�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚��

𝜇𝜇1
𝜇𝜇2� , � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
�� 

 
Then                                    𝑋𝑋1 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚(𝜇𝜇1,𝜎𝜎1)   
 
Conditional Property: 

Let                             �𝑋𝑋1𝑋𝑋2
�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚��

𝜇𝜇1
𝜇𝜇2� , � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
�� 

 
Then                          𝑓𝑓(𝑥𝑥1|𝑥𝑥2) = 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚�𝜇𝜇1|2,𝜎𝜎1|2�   
 
Where                       𝜇𝜇1|2 = 𝜇𝜇1 + 𝜌𝜌 �𝜎𝜎1

𝜎𝜎2
� (𝑥𝑥2 − 𝜇𝜇2)         

                                  𝜎𝜎1|2 = 𝜎𝜎1�1 − 𝜌𝜌2 
 
It should be noted that the standard deviation of the marginal distribution 
does not depend on the given value. 
 

Applications The bivariate distribution is used in many more applications which are 
common to the multivariate normal distribution. Please refer to 
multivariate normal distribution for a more complete coverage.  
 
Graphical Representation of Multivariate Normal. As with all 
bivariate distributions having only two dependent variables allows it to 
be easily graphed (in a three dimensional graph) and visualized. As 
such the bivariate normal is popular in introducing higher dimensional 
cases.  
 

Resources Online: 
http://mathworld.wolfram.com/BivariateNormalDistribution.html 
http://en.wikipedia.org/wiki/Multivariate_normal_distribution 
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal_
distri.htm (interactive visual representation) 
 
Books: 
Balakrishnan, N. & Lai, C., 2009. Continuous Bivariate Distributions 
2nd ed., Springer.   

http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal_distri.htm
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal_distri.htm
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Yang, K. et al., 2004. Multivariate Statistical Methods in Quality 
Management 1st ed., McGraw-Hill Professional.   
 
Patel, J.K, Read, C.B, 1996. Handbook of the Normal Distribution, 2nd 
Edition, CRC 
 
Tong, Y.L., 1990. The Multivariate Normal Distribution, Springer.   
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irichlet 

6.2. Dirichlet Continuous 
Distribution 

 
Probability Density Function - f(x) 

  
𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; [2,2,2]𝑇𝑇)                                  𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; [10,10,10]𝑇𝑇) 

 

  
𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; �1

2
, 1
2
, 1
2
�𝑇𝑇)                                  𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; [1,1,1]𝑇𝑇) 

  
𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; �1

2
, 1,2�𝑇𝑇)                                  𝐷𝐷𝑖𝑖𝑟𝑟2([𝑥𝑥1, 𝑥𝑥2]𝑇𝑇; [2,1,2]𝑇𝑇)  

  



182  Bivariate and Multivariate Distributions 
D

iri
ch

le
t 

Parameters & Description 

 

𝛂𝛂 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑑𝑑 ,𝛼𝛼0]𝑇𝑇 αi > 0 

Shape 
Matrix. Note 
that the 
matrix 𝜶𝜶 is 
𝑑𝑑 + 1 in 
length. 

𝑑𝑑 𝑑𝑑 ≥ 1 
(integer) 

Dimensions. 
The number 
of random 
variables 
being 
modeled.  

Limits 

 
0 ≤ xi ≤ 1 

 

�𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

≤ 1 

 

Distribution Formulas 

PDF 

 

𝑓𝑓(𝐱𝐱) =
1

B(𝛂𝛂)�1 −�𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

�

𝛼𝛼0−1

� xi
αi−1

d

i=1
 

 
where B(𝜶𝜶) is the multinomial beta function: 

B(𝛂𝛂) =
∏ Γ(αi)d
i=0

Γ�∑ αid
i=0 �

 

 
The special case of the Dirichlet distribution is the beta 
distribution when 𝑑𝑑 = 1. 
 

Marginal PDF 

Let                      𝑿𝑿 = �𝑼𝑼𝑽𝑽�~𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑( 𝜶𝜶) 
Where                  𝑿𝑿 = [𝑋𝑋1, … ,𝑋𝑋𝑠𝑠,𝑋𝑋𝑠𝑠+1, … ,𝑋𝑋𝑑𝑑]𝑇𝑇 
                                  𝑼𝑼 = [𝑋𝑋1, … ,𝑋𝑋𝑠𝑠]𝑇𝑇  
                                  𝑽𝑽 = [𝑋𝑋𝑠𝑠+1, … ,𝑋𝑋𝑑𝑑]𝑇𝑇 
Let                      𝛼𝛼Σ = ∑ 𝛼𝛼𝑗𝑗𝑑𝑑

𝑗𝑗=0 = sum of 𝜶𝜶 matrix elements. 

   𝑼𝑼 ∼ 𝐷𝐷𝑖𝑖𝑟𝑟𝑠𝑠(𝜶𝜶𝒖𝒖)     where   𝜶𝜶𝒖𝒖 = �𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑠𝑠,𝛼𝛼Σ − ∑ 𝛼𝛼𝑗𝑗𝑠𝑠
𝑗𝑗=1 �𝑇𝑇  

 

𝑓𝑓(𝐮𝐮) =
Γ(αΣ)

Γ�𝛼𝛼Σ − ∑ 𝛼𝛼𝑗𝑗𝑠𝑠
𝑗𝑗=1 �∏ Γ(αi)s

i=1
�1−�𝑥𝑥𝑖𝑖

𝑠𝑠

𝑖𝑖=1

�
𝛼𝛼Σ−1−∑ 𝛼𝛼𝑗𝑗𝑠𝑠

𝑗𝑗=1

� xi
αi−1

s

i=1
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When marginalized to one variable: 
𝑋𝑋𝑖𝑖~𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝛼𝛼𝑖𝑖 ,𝛼𝛼Σ − 𝛼𝛼𝑖𝑖) 

 

𝑓𝑓(𝑥𝑥𝑖𝑖) =
Γ(αΣ)

Γ(𝛼𝛼Σ − 𝛼𝛼𝑖𝑖)Γ(αi)
(1 − 𝑥𝑥𝑖𝑖)𝛼𝛼Σ−𝛼𝛼𝑖𝑖−1 xi

αi−1 

Conditional PDF 

𝑼𝑼|𝑽𝑽 = 𝒗𝒗 ∼ 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑−𝑠𝑠�𝜶𝜶𝑢𝑢|𝒗𝒗�   where   𝜶𝜶𝒖𝒖|𝒗𝒗 = [𝛼𝛼𝑆𝑆+1,𝛼𝛼𝑠𝑠+2, … ,𝛼𝛼𝑚𝑚,𝛼𝛼0]𝑇𝑇  
(Kotz et al. 2000, p.488) 
 

𝑓𝑓(𝐮𝐮|𝐯𝐯) =
Γ�∑ 𝛼𝛼𝑗𝑗

𝑠𝑠
𝑗𝑗=0 �

∏ Γ(αi)s
i=0

�1−�𝑥𝑥𝑖𝑖

𝑠𝑠

𝑖𝑖=1

�
𝛼𝛼0−1

� 𝑥𝑥𝑖𝑖
𝛼𝛼𝑖𝑖−1

𝑠𝑠

𝑖𝑖=1
 

 

CDF 

𝐹𝐹(𝐱𝐱) = P(X1 ≤ x1 , X2 ≤ x2, … , Xd ≤ xd) 

= � � …
𝑖𝑖2

0

𝑖𝑖1

0
� �1 −�𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

�

𝛼𝛼0−1
𝑖𝑖𝑑𝑑

0
� xi

αi−1d𝑑𝑑, … ,𝑑𝑑𝑥𝑥2,𝑑𝑑𝑥𝑥1
d

i=1
 

Numerical methods have been explored to evaluate this integral, 
see (Kotz et al. 2000, pp.497-500) 

Reliability 

𝑅𝑅(𝐱𝐱) = P(X1 > x1, X2 > x2, … , Xd > xd) 

= � � …
∞

𝑖𝑖2

∞

𝑖𝑖1
� �1 −�𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

�

𝛼𝛼0−1
∞

𝑖𝑖𝑑𝑑
� xi

αi−1d𝑑𝑑, … ,𝑑𝑑𝑥𝑥2,𝑑𝑑𝑥𝑥1
d

i=1
 

 

Properties and Moments 

Median Solve numerically using 𝐹𝐹(𝒙𝒙) = 0.5 

Mode 𝑥𝑥𝑖𝑖 = 𝛼𝛼𝑖𝑖−1
𝛼𝛼Σ−𝑑𝑑

  for  𝛼𝛼𝑖𝑖 > 0 otherwise no mode 

Mean - 1st Raw Moment Let 𝛼𝛼Σ = ∑ 𝛼𝛼𝑖𝑖𝑑𝑑
𝑖𝑖=0 : 

 
𝐸𝐸[𝑿𝑿] = 𝝁𝝁 =

𝜶𝜶
𝛼𝛼Σ

 

 
Mean of the marginal distribution: 

𝐸𝐸[𝑼𝑼] = 𝝁𝝁𝒖𝒖 =
𝜶𝜶𝑢𝑢
𝛼𝛼Σ

 

 
𝐸𝐸[𝑋𝑋𝑖𝑖] = 𝜇𝜇𝑖𝑖 =

𝛼𝛼𝑖𝑖
𝑉𝑉Σ

 

  where 

𝜶𝜶𝒖𝒖 = �𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑠𝑠,𝛼𝛼Σ −�𝛼𝛼𝑗𝑗

𝑠𝑠

𝑗𝑗=1

�

𝑇𝑇

 

 
Mean of the conditional distribution: 

𝐸𝐸[𝑼𝑼|𝑽𝑽 = 𝒗𝒗] = 𝝁𝝁𝑢𝑢|𝑣𝑣 =
𝜶𝜶𝒖𝒖|𝒗𝒗

𝛼𝛼Σ
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where 
𝜶𝜶𝒖𝒖|𝒗𝒗 = [𝛼𝛼𝑆𝑆+1,𝛼𝛼𝑠𝑠+2, … ,𝛼𝛼𝑚𝑚,𝛼𝛼0]𝑇𝑇 

Variance - 2nd Central Moment Let 𝛼𝛼Σ = ∑ 𝛼𝛼𝑖𝑖𝑑𝑑
𝑖𝑖=0 : 

 

𝑉𝑉𝑉𝑉𝑟𝑟[𝑋𝑋𝑖𝑖] =
𝛼𝛼𝑖𝑖(𝛼𝛼Σ − 𝛼𝛼𝑖𝑖)
𝛼𝛼Σ2(𝛼𝛼Σ + 1) 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� =

−𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗
𝛼𝛼Σ2(𝛼𝛼Σ + 1) 

Parameter Estimation 

Maximum Likelihood Function 

MLE Point 
Estimates 

The MLE estimates of 𝛼𝛼𝚤𝚤�  can be obtained from n observations of 𝒙𝒙𝑾𝑾 by 
numerically maximizing the log-likelihood function: (Kotz et al. 2000, 
p.505) 
 

Λ(𝛂𝛂|E) = 𝑛𝑛 �𝑠𝑠𝑛𝑛Γ(𝛼𝛼Σ) −� ln𝛤𝛤�𝛼𝛼𝑗𝑗�
𝑑𝑑

𝑗𝑗=0

� + 𝑛𝑛��
1
𝑛𝑛 �𝛼𝛼𝑗𝑗 − 1�� ln�𝑥𝑥𝑖𝑖𝑗𝑗�

𝑛𝑛

𝑖𝑖=1

�
𝑑𝑑

𝑗𝑗=0

 

 
The method of moments are used to provide initial guesses of 𝛼𝛼𝑖𝑖 for the 
numerical methods.  
 

Fisher 
Information 
Matrix 

𝐼𝐼𝑖𝑖𝑗𝑗 = −𝑛𝑛𝜓𝜓′(𝛼𝛼Σ), 𝑖𝑖 ≠ 𝑗𝑗 
𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑛𝑛𝜓𝜓′(𝛼𝛼𝑖𝑖) − 𝑛𝑛𝜓𝜓′(𝛼𝛼Σ) 

 
Where 𝜓𝜓′(𝑥𝑥) = 𝑑𝑑2

𝑑𝑑𝑖𝑖2
𝑠𝑠𝑛𝑛Γ(𝑥𝑥) is the trigamma function. See section 1.6.8. 

(Kotz et al. 2000, p.506) 

100𝛾𝛾% 
Confidence 
Intervals 

The confidence intervals can be obtained from the fisher information 
matrix.  

Bayesian 

Non-informative Priors 

Jeffery’s Prior 
�det�𝐼𝐼(𝜶𝜶)� 

where 𝐼𝐼(𝜶𝜶) is given above.  

Conjugate Priors 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝑯𝑯 
from 

𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑(𝒌𝒌;𝑛𝑛𝑡𝑡,𝑯𝑯) 
Multinomiald  

𝑘𝑘𝑖𝑖,𝑗𝑗 failures in 
𝑛𝑛 trials with 𝑑𝑑 

possible 
states. 

Dirichletd+1 𝜶𝜶𝑯𝑯 𝜶𝜶 = 𝜶𝜶𝑯𝑯 + 𝒌𝒌 
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Description , Limitations and Uses 

Example Five machines are measured for performance on demand. The 
machines can either fail, partially fail or success in their application. The 
machines are tested for 10 demands with the following data for each 
machine: 
 

Machine/Trail 1 2 3 4 5 6 7 8 9 10 
1 F = 3 P = 2 S = 5 
2 F=2 P=2 S=6 
3 F=2 P=3 S=5 
4 F=3 P=3 S=4 
5 F=2 P=3 S=5 
𝜇𝜇𝑖𝑖 𝑛𝑛𝑝𝑝𝐹𝐹� 𝑛𝑛𝑝𝑝𝑃𝑃� 𝑛𝑛𝑝𝑝𝐹𝐹� 

 
Estimate the multinomial distribution parameter 𝑯𝑯 = [𝑝𝑝𝐹𝐹 ,𝑝𝑝𝑃𝑃,𝑝𝑝𝑆𝑆]:  
 
Using a non-informative improper prior 𝐷𝐷𝑖𝑖𝑟𝑟3(0,0,0) after updating: 
 

𝒙𝒙 = �
𝑝𝑝𝐹𝐹
𝑝𝑝𝑃𝑃
𝑝𝑝𝑆𝑆
�       𝜶𝜶 = �

12
13
25
�       𝐸𝐸[𝒙𝒙] = �

𝑝𝑝𝐹𝐹� = 12
50

𝑝𝑝𝑃𝑃� = 13
50

𝑝𝑝𝑆𝑆� = 25
50

�        𝑉𝑉𝑉𝑉𝑟𝑟[𝒙𝒙] = �
7.15𝐵𝐵−5
7.54𝐸𝐸−5

9.80𝐸𝐸−5

� 

 
Confidence intervals for the parameters 𝑯𝑯 = [𝑝𝑝𝐹𝐹 , 𝑝𝑝𝑃𝑃,𝑝𝑝𝑆𝑆] can also be 
calculated using the cdf of the marginal distribution 𝐹𝐹(𝑥𝑥𝑖𝑖). 
 

Characteristic Beta Generalization. The Dirichlet distribution is a generalization of the 
beta distribution. The beta distribution is seen when 𝑑𝑑 = 1. 
 
𝜶𝜶 Interpretation. The higher 𝛼𝛼𝑖𝑖 the sharper and more certain the 
distribution is. This follows from its use in Bayesian statistics to model 
the multinomial distribution parameter 𝑝𝑝. As more evidence is used, the 
𝛼𝛼𝑖𝑖 values get higher which reduces uncertainty. The values of 𝛼𝛼𝑖𝑖 can 
also be interpreted as a count for each state of the multinomial 
distribution.  
 
Alternative Formulation. The most common formulation of the 
Dirichlet distribution is as follows: 
       𝛂𝛂 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑚𝑚]𝑇𝑇  where   αi > 0  
       𝐱𝐱 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚]𝑇𝑇  where  0 ≤ xi ≤ 1,   ∑ 𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 1 

𝑓𝑓(𝐱𝐱) =
1

B(𝛂𝛂)� xi
αi−1

m

i=1
 

 
This formulation is popular because it is a more simple presentation 
where the matrix of 𝜶𝜶 and 𝒙𝒙 are the same size. However it should be 
noted that last term of the vector 𝒙𝒙 is dependent on {𝑥𝑥1 …𝑥𝑥𝑚𝑚−1}   through 
the relationship 𝑥𝑥𝑚𝑚 = 1 − ∑ 𝑥𝑥𝑖𝑖𝑚𝑚−1

𝑖𝑖=1 . 
 
Neutrality. (Kotz et al. 2000, p.500) If 𝑋𝑋1 and 𝑋𝑋2 are non negative 
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random variables such that 𝑋𝑋1 + 𝑋𝑋2 ≤ 1 then 𝑋𝑋𝑖𝑖 is called neutral if the 
following are independent: 

𝑋𝑋𝑖𝑖 ⊥
𝑋𝑋𝑗𝑗

1 − 𝑋𝑋𝑖𝑖
   (𝑖𝑖 ≠ 𝑗𝑗) 

If 𝑿𝑿 ∼ 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑(𝜶𝜶) then 𝑿𝑿 is a neutral vector with each Xi being neutral under 
all permutations of the above definition. This property is unique to the 
Dirichlet distribution.  
 

 Applications Bayesian Statistics.  The Dirichlet distribution is often used as a 
conjugate prior to the multinomial likelihood function. 
 

Resources Online: 
http://en.wikipedia.org/wiki/Dirichlet_distribution  
http://www.cis.hut.fi/ahonkela/dippa/node95.html  
 
Books: 
Kotz, S., Balakrishnan, N. & Johnson, N.L., 2000. Continuous 
Multivariate Distributions, Volume 1, Models and Applications, 2nd 
Edition 2nd ed., Wiley-Interscience.   
 
Congdon, P., 2007. Bayesian Statistical Modelling 2nd ed., Wiley.   
 
MacKay, D.J. & Petoy, L.C., 1995. A hierarchical Dirichlet language 
model. Natural language engineering.   

Relationship to Other Distributions 

Beta 
Distribution 
 
𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑥𝑥;𝛼𝛼,𝛽𝛽) 

Special Case: 
𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑=1(x; [α1,α0]) = 𝐵𝐵𝑒𝑒𝑡𝑡𝑉𝑉(𝑘𝑘 = 𝑥𝑥;𝛼𝛼 = 𝛼𝛼1,𝛽𝛽 = 𝛼𝛼0) 

Gamma 
Distribution 
 
𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝑥𝑥; 𝜆𝜆, 𝑘𝑘) 
 

Let: 

𝑌𝑌𝑖𝑖~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆, 𝑘𝑘𝑖𝑖)   𝑖𝑖. 𝑖𝑖.𝑑𝑑  𝑉𝑉𝑛𝑛𝑑𝑑     𝑉𝑉 = �𝑌𝑌𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 

Then: 
𝑉𝑉~𝐺𝐺𝑉𝑉𝑚𝑚𝑚𝑚𝑉𝑉(𝜆𝜆,∑𝑘𝑘𝑖𝑖) 

Let: 

𝒁𝒁 = �
𝑌𝑌1
𝑉𝑉 ,

𝑌𝑌2
𝑉𝑉 , … ,

𝑌𝑌𝑑𝑑
𝑉𝑉 � 

Then: 
𝒁𝒁~𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑(𝛼𝛼1, … ,𝛼𝛼𝑘𝑘) 

 
*i.i.d: independent and identically distributed 

 
 
 

http://en.wikipedia.org/wiki/Dirichlet_distribution
http://www.cis.hut.fi/ahonkela/dippa/node95.html
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6.3. Multivariate Normal Continuous 
Distribution 

*Note for a graphical representation see bivariate normal distribution 
Parameters & Description 

Parameters 

𝝁𝝁 = [𝜇𝜇1,𝜇𝜇2, … , 𝜇𝜇𝑑𝑑]𝑇𝑇  −∞ < µi <  ∞ 

Location Vector: A d-
dimensional vector 
giving the mean of each 
random variable. 

∑ = �
𝜎𝜎11 ⋯ 𝜎𝜎1𝑑𝑑
⋮ ⋱ ⋮
𝜎𝜎𝑑𝑑1 ⋯ 𝜎𝜎𝑑𝑑𝑑𝑑

� 𝜎𝜎𝑖𝑖𝑖𝑖 > 0 
𝜎𝜎𝑖𝑖𝑗𝑗 ≥ 0 

Covariance Matrix:  A 
𝑑𝑑 × 𝑑𝑑 matrix which 
quantifies the random 
variable variance and 
dependence. This matrix 
determines the shape of 
the distribution. Σ is 
symmetric positive 
definite matrix. 

𝑑𝑑 𝑑𝑑 ≥ 2 
(integer) 

Dimensions. The number 
of dependent variables. 

Limits −∞ < xi <  ∞ 

Distribution Formulas 

PDF 

 

𝑓𝑓(𝐱𝐱) =
1

(2𝜋𝜋)𝑑𝑑/2�|𝚺𝚺|
exp �−

1
2

(𝐱𝐱 − 𝛍𝛍)T𝚺𝚺−1(𝐱𝐱 − 𝛍𝛍)� 

 
Where |𝚺𝚺| is the determinant of 𝚺𝚺. 
 

Marginal PDF 

Let                      𝑿𝑿 = �𝑼𝑼𝑽𝑽�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑 ��
𝝁𝝁𝑢𝑢
𝝁𝝁𝒗𝒗� , �

𝚺𝚺𝑢𝑢𝑢𝑢 𝚺𝚺𝑢𝑢𝑣𝑣
𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝒗𝒗𝒗𝒗

�� 

Where                     𝑿𝑿 = �𝑋𝑋1, … ,𝑋𝑋𝑝𝑝,𝑋𝑋𝑝𝑝+1, … ,𝑋𝑋𝑑𝑑�
𝑇𝑇 

                                  𝑼𝑼 = �𝑋𝑋1, … ,𝑋𝑋𝑝𝑝�
𝑇𝑇 

                                  𝑽𝑽 = �𝑋𝑋𝑝𝑝+1, … ,𝑋𝑋𝑑𝑑�
𝑇𝑇 

 
𝑼𝑼 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝(𝝁𝝁𝒖𝒖,𝚺𝚺𝒖𝒖𝒖𝒖) 

𝑓𝑓(𝒖𝒖) = � 𝑓𝑓(𝒙𝒙) 𝑑𝑑𝒗𝒗
∞

−∞
 

=
1

(2𝜋𝜋)𝑝𝑝/2�|𝚺𝚺𝒖𝒖𝒖𝒖|
exp �−

1
2

(𝐮𝐮 − 𝝁𝝁𝒖𝒖)T𝚺𝚺uu−1(𝐮𝐮 − 𝝁𝝁𝒖𝒖)� 

Conditional PDF 𝑼𝑼|𝑽𝑽 = 𝒗𝒗 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝�𝝁𝝁𝑢𝑢|𝑣𝑣,𝚺𝚺𝑢𝑢|𝑣𝑣� 
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Where                        𝝁𝝁𝑢𝑢|𝑣𝑣 = 𝝁𝝁𝑢𝑢 + 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1(𝒗𝒗 − 𝝁𝝁𝑣𝑣) 
                                  𝚺𝚺𝑢𝑢|𝑣𝑣 = 𝚺𝚺𝑢𝑢𝑢𝑢 − 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1𝚺𝚺𝑢𝑢𝑣𝑣 
 

CDF 
𝐹𝐹(𝐱𝐱) =

1
(2𝜋𝜋)𝑑𝑑/2�|𝚺𝚺|

� exp �−
1
2

(𝐱𝐱 − 𝛍𝛍)T𝚺𝚺−1(𝐱𝐱 − 𝛍𝛍)�
𝐱𝐱

−∞
d𝒙𝒙 

 

Reliability 
𝑅𝑅(𝐱𝐱) =

1
(2𝜋𝜋)𝑑𝑑/2�|𝚺𝚺|

� exp �−
1
2

(𝐱𝐱 − 𝛍𝛍)T𝚺𝚺−1(𝐱𝐱 − 𝛍𝛍)�
∞

𝐱𝐱
d𝒙𝒙 

 

Properties and Moments 

Median 𝝁𝝁 

Mode 𝝁𝝁 

Mean - 1st Raw Moment 𝐸𝐸[𝑿𝑿] = 𝝁𝝁 
 
Mean of the marginal distribution: 

𝐸𝐸[𝑼𝑼] = 𝝁𝝁𝑢𝑢 
𝐸𝐸[𝑽𝑽] = 𝝁𝝁𝑣𝑣 

 
Mean of the conditional distribution: 

𝝁𝝁𝑢𝑢|𝑣𝑣 = 𝝁𝝁𝑢𝑢 + 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1(𝒗𝒗 − 𝝁𝝁𝑣𝑣) 

Variance - 2nd Central Moment 𝐶𝐶𝐶𝐶𝐶𝐶[𝑿𝑿] = 𝚺𝚺 
 
Covariance of marginal distributions: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐔𝐔) = 𝚺𝚺𝐮𝐮𝐮𝐮 
 
Covariance of conditional distributions: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐔𝐔|𝐕𝐕) = 𝚺𝚺𝑢𝑢𝑢𝑢 − 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1𝚺𝚺𝑢𝑢𝑣𝑣 
 

Parameter Estimation 

Maximum Likelihood Function 

MLE Point 
Estimates 

When given complete data of 𝑛𝑛𝐹𝐹 samples: 
𝒙𝒙𝑩𝑩 = �𝒙𝒙1,𝑡𝑡,𝒙𝒙2,𝑡𝑡, … ,𝒙𝒙𝑑𝑑,𝑡𝑡�

𝑻𝑻   where  𝑡𝑡 = (1,2, … ,𝑛𝑛𝐹𝐹) 
 
The following MLE estimates are given: (Kotz et al. 2000, p.161)  

𝛍𝛍� =
1

nF
�𝒙𝒙𝑡𝑡

𝑛𝑛𝐹𝐹

𝑡𝑡=1

       

Σ�𝑖𝑖𝑗𝑗 =
1

nF
��𝑥𝑥𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝚤𝚤� �(𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝜇𝜇𝚥𝚥� )
𝑛𝑛𝐹𝐹

𝑡𝑡=1

 

 
A review of different estimators is given in (Kotz et al. 2000). When 
estimates are from a low number of samples (𝑛𝑛𝐹𝐹 < 30) a correction 
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factor of -1 can be introduced to give the unbiased estimators (Tong 
1990, p.53): 

Σ�𝑖𝑖𝑗𝑗 =
1

nF − 1��𝑥𝑥𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝚤𝚤� �(𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝜇𝜇𝚥𝚥� )
𝑛𝑛𝐹𝐹

𝑡𝑡=1

 

 

Fisher 
Information 
Matrix 

𝐼𝐼𝑖𝑖,𝑗𝑗 =
𝜕𝜕𝜇𝜇𝑇𝑇

𝜕𝜕𝜃𝜃𝑖𝑖
Σ−1

𝜕𝜕𝜇𝜇
𝜕𝜕𝜃𝜃𝑗𝑗

 

Bayesian 

Non-informative Priors when 𝚺𝚺 is known,  𝜋𝜋0(𝝁𝝁)  
 (Yang and Berger 1998, p.22) 

Type Prior Posterior 

Uniform 
Improper, Jeffrey, 
Reference Prior 

1 
𝜋𝜋(𝝁𝝁|𝑬𝑬)~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑 �µ;

1
nF
�𝒙𝒙𝑡𝑡

𝑛𝑛𝐹𝐹

𝑡𝑡=1

,
𝚺𝚺

nF
� 

when 𝝁𝝁 ∈ (∞,∞) 

Shrinkage (𝝁𝝁𝑇𝑇𝚺𝚺−1𝝁𝝁𝑇𝑇)−(𝑑𝑑−2) No Closed Form 

Non-informative Priors when 𝝁𝝁 is known,  𝜋𝜋𝑜𝑜(𝚺𝚺)  
 (Yang & Berger 1994) 

Type Prior Posterior 

Uniform Improper 
Prior with limits  

𝚺𝚺 ∈ (0,∞) 

1 𝜋𝜋�𝚺𝚺−𝟏𝟏�𝑬𝑬�~ 

𝑊𝑊𝑖𝑖𝑠𝑠ℎ𝑉𝑉𝑟𝑟𝑡𝑡𝑑𝑑 �𝚺𝚺−𝟏𝟏;𝑛𝑛𝐹𝐹 − 𝑑𝑑 − 1,
𝑺𝑺−1

𝑛𝑛𝐹𝐹
� 

Jeffery’s Prior 1

|𝚺𝚺|
d+1
2

 𝜋𝜋�𝚺𝚺−𝟏𝟏�𝑬𝑬�~ 

𝑊𝑊𝑖𝑖𝑠𝑠ℎ𝑉𝑉𝑟𝑟𝑡𝑡𝑑𝑑 �𝚺𝚺−𝟏𝟏; 𝑛𝑛𝐹𝐹 ,
𝑺𝑺−1

𝑛𝑛𝐹𝐹
� 

with limits 𝚺𝚺 ∈ (0,∞) 

Reference Prior 
Ordered 

{𝜆𝜆𝑖𝑖 ,𝜆𝜆𝑗𝑗 , . . , 𝜆𝜆𝑑𝑑} 

1
|𝚺𝚺|∏ (λi − λj)i<𝑗𝑗

 Proper - No Closed Form 

Reference Prior 
Ordered 
{𝜆𝜆1, 𝜆𝜆𝑑𝑑 ,𝜆𝜆𝑖𝑖 , . . ,𝜆𝜆𝑑𝑑−1} 

1
|𝚺𝚺|(logλ1 − logλd)d−2 ∏ (λi − λj)i<𝑗𝑗

 Proper - No Closed Form 

MDIP 1
|𝚺𝚺| 

No Closed Form 

Non-informative Priors when 𝝁𝝁 and 𝚺𝚺 are unknown for bivariate normal,  𝜋𝜋𝑜𝑜(𝝁𝝁,𝚺𝚺). A 
complete coverage of numerous reference prior distributions with different parameter 

ordering is contained in (Berger & Sun 2008) 
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Type Prior Posterior 

Uniform Improper 
Prior 

1 No Closed Form 

Jeffery’s Prior 1

|𝚺𝚺|
d+1
2

 No Closed Form 

Reference Prior 
Ordered 

{𝜆𝜆𝑖𝑖 ,𝜆𝜆𝑗𝑗 , . . , 𝜆𝜆𝑑𝑑} 

1
|𝚺𝚺|∏ (λi − λj)i<𝑗𝑗

 No Closed Form 

Reference Prior 
Ordered 
{𝜆𝜆1, 𝜆𝜆𝑑𝑑 ,𝜆𝜆𝑖𝑖 , . . ,𝜆𝜆𝑑𝑑−1} 

1
|𝚺𝚺|(logλ1 − logλd)d−2 ∏ (λi − λj)i<𝑗𝑗

 No Closed Form 

MDIP 1
|𝚺𝚺| 

No Closed Form 

where 𝜆𝜆𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ eigenvalue of Σ,  and 𝑅𝑅� and 𝑅𝑅 are population and sample multiple 
correlation coefficients where: 

S𝑖𝑖𝑗𝑗 =
1

nF − 1��𝑥𝑥𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝚤𝚤� �(𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝜇𝜇𝚥𝚥� )
𝑛𝑛𝐹𝐹

𝑡𝑡=1

        and         𝐱𝐱� =
1

nF
�𝒙𝒙𝑡𝑡

𝑛𝑛𝐹𝐹

𝑡𝑡=1

 

 
 

Conjugate Priors 

UOI Likelihood 
Model 

Evidenc
e 

Dist of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝝁𝝁 
from 

𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑(𝝁𝝁,𝚺𝚺) 

Multi-variate 
Normal with 

known 𝚺𝚺 

𝑛𝑛𝐹𝐹  events 
at 𝒙𝒙 

points 

Multi-
variate 
Normal 

𝑼𝑼𝟎𝟎,𝐕𝐕𝟎𝟎 

𝑼𝑼 =
𝐕𝐕0−1𝐔𝐔𝐨𝐨 + nF𝐕𝐕−1𝐱𝐱�
𝐕𝐕0−1 + nF𝚺𝚺−1

  

 

𝐕𝐕 =
1

𝐕𝐕0−1 + nF𝚺𝚺−𝟏𝟏
 

Description , Limitations and Uses 

Example See bivariate normal distribution. 

Characteristic Standard Spherical Normal Distribution. When 𝝁𝝁 = 0, 𝚺𝚺 = 𝐼𝐼 we 
obtain the standard spherical normal distribution: 

𝑓𝑓(𝐱𝐱) =
1

(2𝜋𝜋)𝑑𝑑/2 exp �−
1
2 𝐱𝐱

T𝐱𝐱� 

 
Covariance Matrix. (Yang et al. 2004, p.49) 

- Diagonal Elements. The diagonal elements of Σ is the 
variance of each random variable.  𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋𝑖𝑖)    

- Non Diagonal Elements.  Non diagonal elements give the 
covariance 𝜎𝜎𝑖𝑖𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝜎𝜎𝑗𝑗𝑖𝑖. Hence the matrix is 
symmetric.  

- Independent Variables. If 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝜎𝜎𝑖𝑖𝑗𝑗 = 0 then 𝑋𝑋𝑖𝑖 and 
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𝑋𝑋𝑗𝑗 and independent. 
- 𝝈𝝈𝑾𝑾𝒊𝒊 > 0. When 𝑋𝑋𝑖𝑖 increases then 𝑋𝑋𝑗𝑗 and tends to increase. 
- 𝝈𝝈𝑾𝑾𝒊𝒊 < 0. When 𝑋𝑋𝑖𝑖 increases then 𝑋𝑋𝑗𝑗 and tends to decrease. 

 
Ellipsoid Axis. The ellipsoids has axes pointing in the direction of the 
eigenvectors of 𝚺𝚺. The magnitude of these axes are given by the 
corresponding eigenvalues. 
 
Mean / Median / Mode: 
As per the univariate distributions the mean, median and mode are 
equal.  
 
Convolution Property 
Let                  𝑿𝑿 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑(𝝁𝝁𝒙𝒙,𝚺𝚺𝐱𝐱)          𝒀𝒀 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑�𝝁𝝁𝒚𝒚,𝚺𝚺𝐲𝐲�      
Where                            𝑿𝑿 ⊥ 𝒀𝒀 (independent) 
Then                      𝑿𝑿 + 𝒀𝒀~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑�𝝁𝝁𝒙𝒙 + 𝝁𝝁𝒚𝒚,𝚺𝚺𝒙𝒙 + 𝚺𝚺𝒚𝒚� 
 
Note if X and Y are dependent then X + Y may not be normally 
distributed. (Novosyolov 2006) 
 
Scaling Property 
Let                                       𝒀𝒀 = 𝑨𝑨𝑿𝑿 + 𝒃𝒃              Y is a p x 1 matrix 
                                                                             b is a p x 1 matrix 
 
Then                               𝒀𝒀~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑(𝑨𝑨𝝁𝝁 + 𝒃𝒃,𝑨𝑨𝚺𝚺𝑨𝑨𝑻𝑻)    A is a p x d matrix 
 
Marginalize Property: 

Let                           𝑿𝑿 = �𝑼𝑼𝑽𝑽�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑 ��
𝝁𝝁𝑢𝑢
𝝁𝝁𝒗𝒗� , �

𝚺𝚺𝑢𝑢𝑢𝑢 𝚺𝚺𝑢𝑢𝑣𝑣
𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝒗𝒗𝒗𝒗

�� 

 
Then                          𝑼𝑼 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝(𝝁𝝁𝒖𝒖,𝚺𝚺𝒖𝒖𝒖𝒖)            𝑼𝑼 is a p x 1 matrix 
 
Conditional Property: 

Let                        𝑿𝑿 = �𝑼𝑼𝑽𝑽�~𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑑𝑑 ��
𝝁𝝁𝑢𝑢
𝝁𝝁𝑣𝑣� , �

𝚺𝚺𝑢𝑢𝑢𝑢 𝚺𝚺𝑢𝑢𝑣𝑣
𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝒗𝒗𝒗𝒗

�� 

 
Then                     𝑼𝑼|𝑽𝑽 = 𝒗𝒗 ∼ 𝑁𝑁𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝�𝝁𝝁𝑢𝑢|𝑣𝑣,𝚺𝚺𝑢𝑢|𝑣𝑣�    𝑼𝑼 is a p x 1 matrix 
 
Where                        𝝁𝝁𝑢𝑢|𝑣𝑣 = 𝝁𝝁𝑢𝑢 + 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1(𝑽𝑽 − 𝝁𝝁𝑣𝑣)         
                                  𝚺𝚺𝑢𝑢|𝑣𝑣 = 𝚺𝚺𝑢𝑢𝑢𝑢 − 𝚺𝚺𝑢𝑢𝑣𝑣𝑇𝑇 𝚺𝚺𝑣𝑣𝑣𝑣−1𝚺𝚺𝑢𝑢𝑣𝑣 
 
It should be noted that the standard deviation of the marginal 
distribution does not depend on the given values in V. 
 

 Applications Convenient Properties. (Balakrishnan & Lai 2009, p.477) Popularity 
of the multivariate normal distribution over other multivariate 
distributions is due to the convenience of the conditional and marginal 
distribution properties which both produce univariate normal 
distributions. 
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Kalman Filter. The Kalman filter estimates the current state of a 
system in the presence of noisy measurements. This process uses 
multivariate normal distributions to model the noise.  
 
Multivariate Analysis of Variance (MANOVA). A test used to analyze 
variance and dependence of variables. A popular model used to 
conduct MANOVA assumes the data comes from a multivariate normal 
population.   
 
Gaussian Regression Process. This is a statistical model for 
observations or events that occur in a continuous domain of time or 
space, where every point is associated with a normally distributed 
random variable and every finite collection of these random variables 
has a multivariate normal distribution. 
 
Multi-Linear Regression. Multi-linear regression attempts to model 
the relationship between parameters and variables by fitting a linear 
equation. One model to do such a task (MLE) fits a distribution to the 
observed variance where a multivariate normal distribution is often 
assumed. 
 
Gaussian Bayesian Belief Networks (BBN). BBNs graphical 
represent the dependence between variables in a probability 
distribution. When using continuous random variables BBNs quickly 
become tremendously complicated.  However due to the multivariate 
normal distribution’s conditional and marginal properties this task is 
simplified and popular.  
 

Resources Online: 
http://mathworld.wolfram.com/BivariateNormalDistribution.html 
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal
_distri.htm (interactive visual representation) 
 
Books: 
Patel, J.K, Read, C.B, 1996. Handbook of the Normal Distribution, 2nd 
Edition, CRC 
 
Tong, Y.L., 1990. The Multivariate Normal Distribution, Springer.   
 
Yang, K. et al., 2004. Multivariate Statistical Methods in Quality 
Management 1st ed., McGraw-Hill Professional.   
 
Bertsekas, D.P. & Tsitsiklis, J.N., 2008. Introduction to Probability, 2nd 
Edition, Athena Scientific.   

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal_distri.htm
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_binormal_distri.htm
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6.4. Multinomial Discrete 
Distribution 

 
Probability Density Function - f(k) 

 
Trinomial Distribution, 𝑓𝑓([𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3]𝑇𝑇) where 𝑛𝑛 = 8, 𝐩𝐩 = �1

3
, 1
4

, 5
12
�
𝑇𝑇
. Note 𝑘𝑘3 is not shown 

because it is determined using 𝑘𝑘3 = 𝑛𝑛 − 𝑘𝑘1 − 𝑘𝑘2 

         
Trinomial Distribution, 𝑓𝑓([𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3]𝑇𝑇) where 𝑛𝑛 = 20, 𝐩𝐩 = �1

3
, 1
2

, 1
6
�
𝑇𝑇
. Note 𝑘𝑘3 is not shown 

because it is determined as 𝑘𝑘3 = 𝑛𝑛 − 𝑘𝑘1 − 𝑘𝑘2 
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Parameters & Description 

Parameters 

𝑛𝑛  n > 0  
(integer) 

Number of Trials. This is 
sometimes called the index. 
(Johnson et al. 1997, p.31) 

𝐩𝐩 = [𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑑𝑑]𝑇𝑇 

0 ≤ pi ≤ 1 

�𝑝𝑝𝑖𝑖

𝑑𝑑

𝑖𝑖=1

= 1 

Event Probability Matrix:  
The probability of event i 
occurring. 𝑝𝑝𝑖𝑖 is often called 
cell probabilities. (Johnson 
et al. 1997, p.31) 

𝑑𝑑 𝑑𝑑 ≥ 2 
(integer) 

Dimensions. The number of 
mutually exclusive states of 
the system. 

Limits 

 
ki ∈ {0, … ,𝑛𝑛} 

 

�𝑘𝑘𝑖𝑖

𝑑𝑑

𝑖𝑖=1

= 𝑛𝑛 

 

Distribution Formulas 

PDF 

 

𝑓𝑓(𝐤𝐤) = �
n

k1, k2, . . , kd�� pi
ki

d

i=1
 

where 

�
n

k1, k2, . . , kn� =
n!

k1! k2! … kd! =
n!

∏ ki!d
i=1

=
Γ(n + 1)

∏ Γ(ki + 1)d
i=1

 

 
Note that in p there is only d-1 ‘free’ variables as the last 
𝑝𝑝𝑑𝑑 = 1 −∑ 𝑝𝑝𝑖𝑖𝑑𝑑−1

𝑖𝑖=1  giving the distribution: 
 

𝑓𝑓(𝐤𝐤) = �
n

k1, k2, . . , kn�� pi
ki

d−1

i=1
.�1 −� pi

s

i=1

�
n−∑ kid−1

i=1

 

 
Now the special case of binomial distribution when 𝑑𝑑 = 2 can be 
seen. 
 

Marginal PDF 

Let                      𝑲𝑲 = �𝑼𝑼𝑽𝑽�~𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑 �𝑛𝑛, �
𝑯𝑯𝒖𝒖
𝑯𝑯𝒗𝒗�� 

Where                  𝑲𝑲 = [𝐾𝐾1, … ,𝐾𝐾𝑠𝑠,𝐾𝐾𝑠𝑠+1, … ,𝐾𝐾𝑑𝑑]𝑇𝑇 
                                  𝑼𝑼 = [𝐾𝐾1, … ,𝐾𝐾𝑠𝑠]𝑇𝑇 
                                  𝑽𝑽 = [𝐾𝐾𝑠𝑠+1, … ,𝐾𝐾𝑑𝑑]𝑇𝑇 

𝑼𝑼 ∼ 𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑠𝑠(𝑛𝑛,𝑯𝑯𝒖𝒖) 
where                𝑯𝑯𝒖𝒖 = �𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑠𝑠−1, �1 − ∑ 𝑝𝑝𝑖𝑖𝑠𝑠−1

𝑖𝑖=1 ��𝑇𝑇  
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𝑓𝑓(𝒖𝒖) = �
n

k1, k2, . . , ks�� pi
ki

s

i=1
 

 
When only two states 𝑯𝑯 = [𝑝𝑝, (1 − 𝑝𝑝)]𝑇𝑇: 
 

𝑓𝑓(𝑘𝑘𝑖𝑖) = �
n
ki� pi

ki(1 − 𝑝𝑝𝑖𝑖)𝑛𝑛−𝑘𝑘𝑖𝑖 

Conditional PDF 

𝑼𝑼|𝑽𝑽 = 𝒗𝒗 ∼ 𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑠𝑠�𝑛𝑛𝑢𝑢|𝑣𝑣,𝑯𝑯𝑢𝑢|𝒗𝒗� 
where 

𝑛𝑛𝑢𝑢|𝑣𝑣 = 𝑛𝑛 − 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − � 𝑘𝑘𝑖𝑖

𝑑𝑑

𝑖𝑖=𝑠𝑠+1

 

𝑯𝑯𝑢𝑢|𝑣𝑣 =
1

∑ 𝑝𝑝𝑖𝑖𝑠𝑠
𝑖𝑖=1

[𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑠𝑠]𝑇𝑇 

 

CDF 

𝐹𝐹(𝐤𝐤) = P(K1 ≤ k1, K2 ≤ k2, … , Kd ≤ kd) 

= � � …
k2

j2=0

k1

j1=0

� �
n

j1, j2, . . , jd�� pi
ji

d

i=1

kd

jd=0

  

 

Reliability 

𝑅𝑅(𝐤𝐤) = P(K1 > k1, K2 > k2, … , Kd > kd) 

= � � …
n

j2=k2+1

n

j1=k1+1

� �
n

j1, j2, . . , jd�� pi
ji

d

i=1

n

jd=kd+1

  

 

Properties and Moments 

Median3 𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑉𝑉𝑛𝑛(𝑘𝑘𝑖𝑖) is either {⌊𝑛𝑛𝑝𝑝𝑖𝑖⌋, ⌈𝑛𝑛𝑝𝑝𝑖𝑖⌉} 

Mode 𝑀𝑀𝐶𝐶𝑑𝑑𝑒𝑒(𝑘𝑘𝑖𝑖) = ⌊(𝑛𝑛 + 1)𝑝𝑝𝑖𝑖⌋ 

Mean - 1st Raw Moment 𝐸𝐸[𝑲𝑲] = 𝝁𝝁 = 𝑛𝑛𝑯𝑯 
 
Mean of the marginal distribution: 

𝐸𝐸[𝑼𝑼] = 𝝁𝝁𝒖𝒖 = 𝑛𝑛𝑯𝑯𝑢𝑢 
𝐸𝐸[𝐾𝐾𝑖𝑖] = 𝜇𝜇𝑘𝑘𝑖𝑖 = 𝑛𝑛𝑝𝑝𝑖𝑖 

 
Mean of the conditional distribution: 

𝐸𝐸[𝑼𝑼|𝑽𝑽 = 𝒗𝒗] = 𝝁𝝁𝑢𝑢|𝑣𝑣 = 𝑛𝑛𝑢𝑢|𝑣𝑣𝑯𝑯𝑢𝑢|𝒗𝒗 
where 

𝑛𝑛𝑢𝑢|𝑣𝑣 = 𝑛𝑛 − 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − � 𝑘𝑘𝑖𝑖

𝑑𝑑

𝑖𝑖=𝑠𝑠+1

 

𝑯𝑯𝑢𝑢|𝑣𝑣 =
1

∑ 𝑝𝑝𝑖𝑖𝑠𝑠
𝑖𝑖=1

[𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑠𝑠]𝑇𝑇 

 

                                                           
3 ⌊𝑥𝑥⌋ = is the floor function (largest integer not greater than 𝑥𝑥) 
   ⌈𝑥𝑥⌉ = is the ceiling function (smallest integer not less than 𝑥𝑥) 
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Variance - 2nd Central Moment 𝑉𝑉𝑉𝑉𝑟𝑟[𝐾𝐾𝑖𝑖] = 𝑛𝑛𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) 
𝐶𝐶𝐶𝐶𝐶𝐶�𝐾𝐾𝑖𝑖 ,𝐾𝐾𝑗𝑗� = −𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 

 
Covariance of marginal distributions: 

𝑉𝑉𝑉𝑉𝑟𝑟[𝐾𝐾𝑖𝑖] = 𝑛𝑛𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) 
 
Covariance of conditional distributions: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝐾𝐾𝑈𝑈|𝑉𝑉,𝑖𝑖� = 𝑛𝑛𝑢𝑢|𝑣𝑣𝑝𝑝𝑢𝑢|𝑣𝑣,𝑖𝑖(1 − 𝑝𝑝𝑢𝑢|𝑣𝑣,𝑖𝑖) 
𝐶𝐶𝐶𝐶𝐶𝐶�𝐾𝐾𝑈𝑈|𝑉𝑉,𝑖𝑖 ,𝐾𝐾𝑈𝑈|𝑉𝑉,𝑗𝑗� = −𝑛𝑛𝑢𝑢|𝑣𝑣𝑝𝑝𝑢𝑢|𝑣𝑣,𝑖𝑖𝑝𝑝𝑢𝑢|𝑣𝑣,𝑗𝑗 

 
where 

𝑛𝑛𝑢𝑢|𝑣𝑣 = 𝑛𝑛 − 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − � 𝑘𝑘𝑖𝑖

𝑑𝑑

𝑖𝑖=𝑠𝑠+1

 

𝑯𝑯𝑢𝑢|𝑣𝑣 =
1

∑ 𝑝𝑝𝑖𝑖𝑠𝑠
𝑖𝑖=1

[𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑠𝑠]𝑇𝑇 

 

Parameter Estimation 

Maximum Likelihood Function 

MLE Point 
Estimates 

As with the binomial distribution the MLE estimates, given the vector 
k(and therefore n), is:(Johnson et al. 1997, p.51)  
 

𝐩𝐩� =
𝐤𝐤
n 

 
Where there are 𝑇𝑇 observations of 𝒌𝒌𝑡𝑡 each containing 𝑛𝑛𝑡𝑡 trails: 

𝐩𝐩� =
1

∑ ntn
t=1

�𝒌𝒌𝑡𝑡

𝑇𝑇

𝑡𝑡=1

       

 

100𝛾𝛾% 
Confidence 
Intervals 
 
(Complete 
Data) 

An approximation of the joint interval confidence limits for 100𝛾𝛾% given 
by Goodman in 1965 is:(Johnson et al. 1997, p.51)  
 
𝑝𝑝𝑖𝑖 lower confidence limit: 

1
2(𝑛𝑛 + 𝐴𝐴) �𝐴𝐴 + 2𝑘𝑘𝑖𝑖 − 𝐴𝐴�𝐴𝐴 +

4
𝑛𝑛 𝑘𝑘𝑖𝑖

(𝑛𝑛 − 𝑘𝑘𝑖𝑖)� 

 
𝑝𝑝𝑖𝑖 upper confidence limit: 
 

1
2(𝑛𝑛 + 𝐴𝐴) �𝐴𝐴 + 2𝑘𝑘𝑖𝑖 + 𝐴𝐴�𝐴𝐴 +

4
𝑛𝑛 𝑘𝑘𝑖𝑖

(𝑛𝑛 − 𝑘𝑘𝑖𝑖)� 

 
where Φ is the standard normal CDF and: 

𝐴𝐴 = 𝑍𝑍𝑑𝑑−1+𝛾𝛾
𝑑𝑑

= Φ−1 �
d − 1 + γ

d � 
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A complete coverage of estimation techniques and confidence intervals 
is contained in (Johnson et al. 1997, pp.51-65). A more accurate method 
which requires numerical methods is given in (Sison & Glaz 1995) 
 
 

Bayesian 

Non-informative Priors,  𝝅𝝅(𝑯𝑯)  
 (Yang and Berger 1998, p.6) 

Type Prior Posterior 

Uniform Prior 1 = 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1(𝛼𝛼𝑖𝑖 = 1) 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1 (𝐩𝐩|1 + 𝐤𝐤) 

Jeffreys Prior 
One Group -
Reference Prior 

𝐶𝐶

�∏ 𝑝𝑝𝑖𝑖𝑑𝑑
𝑖𝑖=1  

= 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1 �𝛼𝛼𝑖𝑖 = 1
2
� 

where  𝐶𝐶 is a constant 

𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1 (𝐩𝐩�12+𝐤𝐤) 
 

In terms of the reference prior, this approach considers all 
parameters are of equal importance.(Berger & Bernardo 1992) 

d-group 
Reference Prior 

𝐶𝐶

�∏ �𝑝𝑝𝑖𝑖�1− ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑗𝑗=1 ��𝑑𝑑−1

𝑖𝑖=1  
 

where  𝐶𝐶 is a constant 

Proper. See m-group posterior 
when 𝑚𝑚 = 1. 

 
 

This approach considers each parameter to be of different 
importance (group length 1) and so the parameters must be ordered 
by importance. (Berger & Bernardo 1992) 

m-group 
Reference Prior 𝜋𝜋𝑜𝑜(𝑯𝑯) =

𝐶𝐶

��1 −∑ 𝑝𝑝𝑗𝑗
𝑁𝑁𝑚𝑚
𝑗𝑗=1 �∏ 𝑝𝑝𝑖𝑖𝑑𝑑−1

𝑖𝑖=1 ∏ �1− ∑ 𝑝𝑝𝑗𝑗
𝑁𝑁𝑖𝑖
𝑗𝑗=1 �

𝑛𝑛𝑖𝑖+1𝑚𝑚−1
𝑖𝑖=1  

 

where groups are given by: 
𝐩𝐩𝟏𝟏 = �𝑝𝑝1, …𝑝𝑝𝑛𝑛1�

𝑇𝑇 ,    𝐩𝐩𝝈𝝈 = �𝑝𝑝𝑛𝑛1+1, … , 𝑝𝑝𝑛𝑛1+𝑛𝑛2�
𝑇𝑇
 

𝑁𝑁𝑗𝑗 = 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑗𝑗   for 𝑗𝑗 = 1, … ,𝑚𝑚 
𝐩𝐩𝐢𝐢 = �𝑝𝑝𝑁𝑁𝑖𝑖−1+1, … , 𝑝𝑝𝑁𝑁𝑖𝑖�

𝑇𝑇
 

𝐶𝐶 is a constant 
Posterior: 

𝜋𝜋(𝑯𝑯|𝒌𝒌) ∝
�1 − ∑ 𝑝𝑝𝑖𝑖

𝑁𝑁𝑚𝑚
𝑗𝑗=1 �

𝑘𝑘𝑑𝑑−12

�∏ 𝑝𝑝𝑖𝑖𝑑𝑑−1
𝑖𝑖=1 ∏ �1 − ∑ 𝑝𝑝𝑗𝑗

𝑁𝑁𝑖𝑖
𝑗𝑗=1 �

𝑛𝑛𝑖𝑖+1𝑚𝑚−1
𝑖𝑖=1  

 

 
This approach splits the parameters into m different groups of 
importance. Within the group order is not important, but the groups 
need to be ordered by importance. It is common to have 𝑚𝑚 = 2 and 
split the parameters into importance and nuisance parameters. 
(Berger & Bernardo 1992) 
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MDIP 
� 𝑝𝑝𝑖𝑖

𝑝𝑝𝑖𝑖
𝑑𝑑

𝑖𝑖=1
= 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1(𝛼𝛼𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 1) 

𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1 (𝐩𝐩′|𝑝𝑝𝑖𝑖 + 1 + ki) 
 

Novick and Hall’s 
Prior (improper) � 𝑝𝑝𝑖𝑖−1

𝑑𝑑

𝑖𝑖=1
= 𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1(𝛼𝛼𝑖𝑖 = 0) 

𝐷𝐷𝑖𝑖𝑟𝑟𝑑𝑑+1 (𝐩𝐩|𝐤𝐤) 

Conjugate Priors (Fink 1997) 

UOI Likelihood 
Model 

Evidence Dist of 
UOI 

Prior 
Para 

Posterior 
Parameters 

𝑯𝑯 
from 

𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑(𝒌𝒌;𝑛𝑛𝑡𝑡,𝑯𝑯) 
Multinomiald  

𝑘𝑘𝑖𝑖,𝑗𝑗  failures in 
𝑛𝑛 trials with 
𝑑𝑑 possible 

states. 

Dirichletd+1 𝜶𝜶𝑯𝑯 𝜶𝜶 = 𝜶𝜶𝑯𝑯 + 𝒌𝒌 

Description , Limitations and Uses 

Example A six sided dice being thrown 60 times produces the following 
multinomial distribution:  
 

𝒌𝒌 =

⎣
⎢
⎢
⎢
⎢
⎡
12
6

12
10
8

12⎦
⎥
⎥
⎥
⎥
⎤

      𝑯𝑯 =

⎣
⎢
⎢
⎢
⎢
⎡

0.2
0.1
0.2

0.16̇
0.13̇
0.2 ⎦

⎥
⎥
⎥
⎥
⎤

       𝑛𝑛 = 60 

 
 

Face 
Number 

Times 
Observed 

1 12 
2 7 
3 11 
4 10 
5 8 
6 12 

Characteristic Binomial Generalization. The multinomial distribution is a 
generalization of the binomial distribution where more than two states of 
the system are allowed. The binomial distribution is a special case where 
𝑑𝑑 = 2.  
 
Covariance. All covariance’s are negative. This is because the increase 
in one parameter 𝑝𝑝𝑖𝑖 must result in the decrease of 𝑝𝑝𝑗𝑗 to satisfy Σ𝑝𝑝𝑖𝑖 = 1. 
 
With Replacement. The multinomial distribution assumes replacement. 
The equivalent distribution which assumes without replacement is the 
multivariate hypergeometric distribution. 
 
Convolution Property 
Let           

 𝑲𝑲𝑩𝑩 ∼ 𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑(𝒌𝒌;𝑛𝑛𝑡𝑡 ,𝐩𝐩) 
Then                       

�𝑲𝑲𝑩𝑩 ~𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑(∑𝒌𝒌𝑡𝑡;∑𝑛𝑛𝑡𝑡 ,𝑯𝑯) 
 
*This does not hold when the p parameter differs. 
 

 Applications Partial Failures. When the states of a system under demands cannot 
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be modeled with two states (success or failure) the multinomial 
distribution may be used. Examples of this include when modeling 
discrete states of component degradation. 
 

Resources Online: 
http://en.wikipedia.org/wiki/Multinomial_distribution 
http://mathworld.wolfram.com/MultinomialDistribution.html 
http://www.math.uah.edu/stat/bernoulli/Multinomial.xhtml 
 
Books: 
Johnson, N.L., Kotz, S. & Balakrishnan, N., 1997. Discrete Multivariate 
Distributions 1st ed., Wiley-Interscience.   
 

Relationship to Other Distributions 

Binominal 
Distribution 
 
𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑛𝑛, 𝑝𝑝) 

Special Case: 
𝑀𝑀𝑁𝑁𝐶𝐶𝑚𝑚𝑑𝑑=2(𝐤𝐤|n,𝐩𝐩) = 𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚(𝑘𝑘|𝑛𝑛,𝑝𝑝) 

 
 

http://en.wikipedia.org/wiki/Multinomial_distribution
http://mathworld.wolfram.com/MultinomialDistribution.html
http://www.math.uah.edu/stat/bernoulli/Multinomial.xhtml
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