

US008699785B2

(12) United States Patent

Balakrishnan et al.

(10) Patent No.: US 8,699,785 B2 (45) Date of Patent: Apr. 15, 2014

(54) TEXTURE IDENTIFICATION

(75) Inventors: Sathya Bama Balakrishnan, Tirunelveli (IN); Raju Srinivasan, Madurai (IN);

Abhaikumar Varadhan, Madurai (IN)

(73) Assignee: Thiagarajar College of Engineering,

Madurai, ID (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 638 days.

(21) Appl. No.: 12/938,193

(22) Filed: Nov. 2, 2010

(65) **Prior Publication Data**

US 2012/0106830 A1 May 3, 2012

(51) Int. Cl.

G06K 9/00 (2006.01)

G06T 7/40 (2006.01)

G06T 15/04 (2011.01)

G06F 1/16 (2006.01)

G01S 7/41 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

5,353,355 A	10/1994	Takagi et al.	
6,795,082 B2*	9/2004	Wakabayashi	345/582
7,064,767 B2 *	6/2006	Matsumoto et al	345/582

OTHER PUBLICATIONS

Haley et al., "Rotation-invariant Texture Classification Using a Complete Space-frequency Model," IEEE Transactions on Image Processing, Feb. 1999, vol. 8, Issue 2, pp. 255-269.*

Cheong et al., "Textile Recognition Using Tchebichef Moments of Co-occurrence Matrices", Lecture Notes in Computer Science, 2008, 5226, 1017-1024.

Fountain et al., "Efficient Rotation Invariant Texture Features for Content-Based Image Retrieval", Pattern Recognition, Nov. 1998, 31(11), 1725-1732.

Sheldon et al., "Design of an On-Line Computer-Based Textile Information Retrieval System", Fibers and Polymers Division, Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. Textile Research Journal. Jan. 1968, 38(1) 81-100.

Sheng et al., "Experiments on pattern recognition using invariant fourier-Mellin descriptors", J. Opt. Soc. Am. A., Jun. 1986, 3(6), 771-776.

Wang et al., "Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates", IEEE transactions on pattern analysis and machine intelligence, Sep. 2009, 31(9), 1715-1722.

(Continued)

Primary Examiner — Edward Park (74) Attorney, Agent, or Firm — Woodcock Washburn LLP

(57) ABSTRACT

Technologies are generally described for determining a texture of an object. In some examples, a method for determining a texture of an object includes receiving a two-dimensional image representative of a surface of the object, estimating a three-dimensional (3D) projection of the image, transforming the 3D projection into a frequency domain, projecting the 3D projection in the frequency domain onto a spherical co-ordinate system, and determining the texture of the surface by analyzing spectral signatures extracted from the 3D projection on the spherical co-ordinate system.

20 Claims, 9 Drawing Sheets

