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1. 

TEXTURE IDENTIFICATION 

BACKGROUND 

Applications currently exist that analyze an image of an 
object to extract information about its texture. The extracted 
texture information may then be used by other applications. 
For example, the texture information serves as a low level 
descriptor for content-based indexing and retrieving. Content 
based indexing and retrieving is often used in several indus 
tries such the textile industry, tile industry, crystal industry 
and the like. 

Current content-based retrieval techniques begin by ana 
lyzing photographic images of the object. Typically, a first 
level of analysis is performed manually by an operator. Such 
operators visually examine the image to determine the texture 
of the object. However, the determination of the texture is not 
very accurate. In addition, the operator may not accurately 
perceive a texture image that has undergone geometrical 
transformation Such as rotation or Scaling. 

Numerous techniques have been developed to consider the 
geometric transformation of the image while extracting the 
texture information. Rotation invariant feature extraction is 
one such technique that takes into consideration the rotation 
of the image while extracting the feature of the texture. How 
ever, most rotation invariant feature extraction techniques are 
based on image rotation and do not take into account physical 
Surface rotation of the image. 

Surface rotation invariant techniques have been developed 
to address the Surface rotation parameters related to image 
rotation. However, most surface rotation invariant techniques 
require at least three images for processing thereby increasing 
processing complexity and associated costs. In addition, in 
most cases three images may not be available for processing. 

SUMMARY 

Briefly, according to one embodiment of the present dis 
closure, a method for determining a texture of an object is 
provided. The method includes receiving a two-dimensional 
image representative of a surface of the object and estimating 
a three-dimensional (3D) projection of the image. The 3D 
projection is transformed into a frequency domain and then 
projected on to a spherical co-ordinate system. The texture of 
the Surface is determined by analyzing spectral signatures 
extracted from the 3D projection on the spherical co-ordinate 
system. 

In another embodiment, a system for determining a texture 
of an object is provided. The system includes a processor 
configured to access a two-dimensional image representative 
of a surface of the object and estimate a three-dimensional 
(3D) projection of the image. The 3D projection is trans 
formed into a frequency domain, and projected on to a spheri 
cal co-ordinate system. The processor is further configured to 
determine the texture of the Surface by analyzing spectral 
signatures extracted from the 3D projection on the spherical 
co-ordinate system. The system further includes memory 
configured to store several reference texture images. 

In another embodiment, a method for determining a texture 
of an object is provided. The method includes receiving a 
two-dimensional (2D) representative of a surface of the 
object, calculating several parameters for the image, and clas 
Sifying the Surface into at least one texture type from a set of 
texture types. The texture type is based on the calculated 
parameters and each texture type comprises corresponding 
reference spectral signatures. The method further comprises 
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2 
generating spectral signatures of the Surface and determining 
the texture of the Surface from the spectral signatures. 

In another embodiment, a system for determining a texture 
of an object is provided. The system includes a processor 
configured to access a two-dimensional (2D) representative 
of a surface of the object, calculate a plurality of parameters 
for the image, and classify the Surface into at least one texture 
type from a plurality of texture types. The texture type is 
based on several parameters and each texture type includes 
several reference spectral signatures. The processor is further 
configured to generate spectral signatures of the Surface and 
determine the texture of the surface from the spectral signa 
tures. The system further includes memory circuitry config 
ured to store a plurality of reference texture images, each 
reference texture image having a corresponding reference 
spectral signature. 
The foregoing Summary is illustrative only and is not 

intended to be in any way limiting. In addition to the illustra 
tive aspects, embodiments, and features described above, fur 
ther aspects, embodiments, and features will become appar 
ent by reference to the drawings and the following detailed 
description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of an illustrative embodiment of 
a texture identification system; 

FIG. 2 is a flow chart of one of an illustrative embodiment 
of a method for determining a texture of an object; 

FIG. 3 is a flow chart of one illustrative embodiment of a 
method for determining a texture of the object from frequency 
spectrums; 

FIG. 4 shows an example graph depicting a frequency 
spectrum representative of a tilt angle variation; 

FIG. 5 shows an example graph depicting a frequency 
spectrum representative of an orientation angle variation; 

FIG. 6 is a block diagram of an illustrative embodiment of 
a computing device that may be arranged in accordance with 
the present disclosure; 

FIG. 7 is an illustrative embodiment of a method for textile 
retrieval; 

FIG. 8 is an illustrative embodiment of a method for textile 
segregation; 

FIG. 9 is an illustrative directional histogram; 
FIG.10 is an illustrative embodiment of a method convert 

ing a wavelet transformed image to a spherical coordinate 
system; 

FIG. 11 is an illustrative example of images that may be 
contained in a textile texture database; 

FIG. 12 is an illustrative directional histogram and corre 
sponding textile texture image: 

FIG. 13 is another illustrative directional histogram and 
corresponding textile texture image: 

FIG. 14 is an illustrative spectral signature plot: 
FIG. 15 is another illustrative spectral signature plot; 
FIG. 16 is another illustrative spectral signature plot; and 
FIG. 17 is another illustrative spectral signature plot. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

In the following detailed description, reference is made to 
the accompanying drawings, which form a parthereof. In the 
drawings, similar symbols typically identify similar compo 
nents, unless context dictates otherwise. The illustrative 
embodiments described in the detailed description, drawings, 
and claims are not meant to be limiting. Other embodiments 
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may be utilized, and other changes may be made, without 
departing from the spirit or scope of the Subject matter pre 
sented herein. It will be readily understood that the aspects of 
the present disclosure, as generally described herein, and 
illustrated in the figures, can be arranged, Substituted, com 
bined, separated, and designed in a wide variety of different 
configurations, all of which are explicitly contemplated 
herein. 

Example embodiments are generally directed to determin 
ing a texture of an object. The following description is with 
reference to texture determining applications as used in 
industries such as the textile industry, however it should be 
understood that the techniques described herein may be 
applied in various other applications used in the tiles industry, 
crystal industry and the like. 

FIG. 1 is a block diagram of an illustrative embodiment of 
a texture identification system 100. As depicted, the texture 
identification system 100 includes a processor 110, a memory 
120 and a display unit 130. FIG. 1 further depicts an image 
sensor 140 and an object 150. The depicted components are 
described in further detail below. 
The processor 110 may be configured to access an image of 

the object 150. In one embodiment, the image is a two dimen 
sional representation of a surface 160 of the object. Examples 
of the object 150 include fabrics, carpets, tiles, crystals and 
the like. Depending on the implementation, the processor 110 
may be a microprocessor or Central Processing Unit (CPU). 
In other implementations, the processor 110 may be an Appli 
cation Specific Integrated Circuit (ASIC), a Field Program 
mable Gate Array (FPGA), a digital signal processor (DSP), 
or other integrated formats. 
The image sensor 140 may be configured to capture an 

image of the object 150. In one embodiment, the image sensor 
140 is a digital camera. It may be noted that the processor 110 
may be configured to access the image from the image sensor 
140, the memory 120 or from an external memory device (not 
shown). 
The memory 120 may be configured to maintain (e.g., 

store) reference images with corresponding reference texture 
information. In one embodiment, each reference image is 
represented in the form of reference spectral signatures. In a 
further embodiment, the various reference images stored in 
the memory 120 are classified into a corresponding texture 
type. As used herein, a reference spectral signature corre 
sponds to texture signatures extracted from the frequency 
spectrum of the reference image. 
The memory 120 may include hard disk drives, optical 

drives, tape drives, random access memory (RAM), read-only 
memory (ROM), programmable read-only memory (PROM), 
redundant arrays of independent disks (RAID), flash 
memory, magneto-optical memory, holographic memory, 
bubble memory, magnetic drum, memory Stick, Mylar R tape, 
Smartdisk, thin film memory, Zip drive, or the like or any 
combination thereof. 
The processor 110 may be configured to calculate one or 

more parameters of the image of the object. Examples of 
these parameters include directionality of the image, homo 
geneity of the image, regularity of the image and roughness of 
the image. The parameters are used to classify the Surface into 
a texture type from an available set of texture types. 

In one embodiment, there are four texture types. Each 
texture type includes several reference images and its corre 
sponding texture information. As used herein, a reference 
image is a two dimensional representation of an example 
object and the texture information includes information 
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4 
regarding the texture of the example object. As described 
above, each reference texture has corresponding reference 
spectral signatures. 
The processor 110 may also be configured to generate 

spectral signatures from the image. In general, spectral sig 
natures are the specific combination of reflected and absorbed 
electromagnetic (EM) radiation at varying wavelengths 
which can uniquely identify an object. For example, the spec 
tral signature of stars indicates the spectrum according to the 
EM spectrum. The spectral signature of an object is a function 
of the incidental EM wavelength and material interaction 
with that section of the electromagnetic spectrum. Typically, 
measurements may be made with various instruments, 
including a task specific spectrometer. As used herein, a spec 
tral signature corresponds to texture signatures extracted 
from the frequency spectrum of the image of the object. By 
analyzing the spectral signatures and comparing the spectral 
signatures of the image with the reference spectral signatures 
stored in the memory, the texture of the surface of the object 
150 may be determined. The manner in which the texture of 
the object 150 is determined in described in further detail 
below. 
The texture description and retrieval methods and system 

described herein may be used both in texture information 
based indexing and retrieval of one or more images. In one 
embodiment, textile texture images may be stored in a data 
base, the corresponding data texture descriptors may also be 
generated and stored in the database. When a query textile 
texture image is entered into Such a database, one or more 
query data texture descriptors associated with the query tex 
tile texture image may be generated and compared with the 
data texture descriptors stored in the database in order to 
perform retrieval of a matching textile image. Such matching 
may be based on determining the data texture descriptors in 
the database that are closest or most similar to the query data 
texture descriptors. 

FIG. 7 illustrates a non-limiting example method 700 for 
implementing a textile retrieval system according to an 
embodiment of the present disclosure. At block 701, a query 
textile texture image may be entered into a textile retrieval 
system. The type of texture may be segregated at block 702. In 
one embodiment, when the query textile texture is entered 
into the retrieval system, several texture features, such as 
directionality, homogeneity, regularity and roughness, may 
be extracted or determined. At block 702, the entered query 
textile texture image may be segregated into any one of these 
texture feature categories or types. Note that for textile texture 
images stored in such a textile retrieval system at block 708, 
similar actions may be performed at block 709. 
The type of query textile texture image may be compared to 

those contained in a database of the textile retrieval system. At 
block 710, the query textile texture image and/or it associated 
query data texture descriptors may be compared to the textile 
texture images and/or data texture descriptors in the database. 
Note that the texture segregation process may be on-demand, 
and thus performed at block 709 for textile texture images 
stored in Sucha textile retrieval system as needed, for example 
when a query is entered. 
At block 711, upon finding a matching textile texture 

image and/or data texture descriptors in the database, one or 
more wavelets may be chosen for the matching textile texture 
images. Likewise, at block 703, wavelets may be chosen for 
the query textile texture image. At blocks 704 and 712, affine 
invariant texture signatures may be extracted from the query 
textile texture image and the matching textile texture image, 
respectively. Similarity measurement may be performed 
comparing the query textile texture image and the matching 
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textile texture image at block 705. At block 706, the relevant 
matching textiles are retrieved. 

FIG. 8 illustrates a non-limiting example method 800 for 
performing texture segregation, for example, at blocks 702 
and 709 of FIG. 7. At block 801, a textile texture image may 
be provide or received as input. At block 802 (which, in one 
embodiment, may be performed in parallel with the activities 
performed at block 803,804, and/or 805), the directionality of 
the textile texture image may be determined. Directionality is 
a significant texture feature and may be well-perceived by a 
human visual system. In one embodiment, the geometric 
property of the directional histogram may be used to calculate 
the directionality of an image. To calculate the directionality 
histogram, which may be denoted as HD, the gray scale image 
may be convoluted with any horizontal and vertical edge 
operators. For aparticular pixel of animage, the outputs of the 
horizontal and vertical operations may be identified as VH 
and VV, respectively. Then a gradient vector for the pixel may 
be calculated with following formulae: 

IV HI+IV V 
Magnitude of vector: W G = — — 

Angle of vector: G = tan () WH 

HD may then be calculated by quantizing 0 and counting 
the number of pixels with a magnitude greater than a thresh 
old. Next, all peaks and valleys in HD may be identified. In 
one embodiment, if there are np peaks in the histogram, for 
each peak p, let wip be the set of bins from its previous valley 
to its next Valley, and let (pp be the angular position of the 
peak. Wp may be considered as a hill whose peak is p. In Such 
an embodiment, let HD(cp) be the height of a bin at angular 
position (p. 

In the normalized directional histogram the angles may be 
represented in the horizontal axis. The angles in the range of 
-90° to +90° may be divided into 12 intervals and the quan 
tized angles may be -75°, -60°, -45°. ..., +90°. The vertical 
axis may represent the percentage of pixels with different 
gradient angles. The edges oriented at -90° are the same as 
edges oriented +90°. If the angles are placed in a circle as 
depicted in histogram 900 shown in FIG.9, the next angle of 
-75 in anti-clockwise direction may be +90°. Thus the his 
togram may be constructed starting from any angle. By con 
sidering the circular nature of bins, the position effect may be 
removed. 

Further at block 802, the sharpness of each hill in the 
histogram may be calculated from geometric slope of each 
hill. The sharpness of the hill may be then calculated as the 
weighted Sum of slopes of all line segments joining bin tops 
using the following: 

Sharpness of hill X weightxslope-X, weightxslo 
e 

where the weight of the slope may be obtained from: 

weight = 2, 
circular Difference (peakpoS. binkpoS) 

where i = 
minicircular difference between two bin positions 

Then, the directionality of the textile texture image may be 
determined using: 
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6 

directionality= 
for each hiti.h 

weight, XSharpness, 

where: 

bin Height(peak) 
X. bin Height(peak) 

for each hit.hi 

weight = 

At block 805 of FIG. 8, (which, in one embodiment, may be 
performed in parallel with the activities performed at block 
802, 803, and/or 804), the homogeneity of the textile texture 
image may be determined. Homogeneity is one of the Haral 
ick features obtained based on cooccurence matrices of grey 
scale images. The Grey Level Cooccurence Matrix (GLCM) 
may be constructed from the textile texture image by estimat 
ing the pairwise statistics of pixel intensity. Each element (i,j) 
of such a matrix may represent an estimate of the probability 
that two pixels with a specified separation have grey levels i 
and j. The separation may be specified by a displacement, d 
and an angle, 0. 

where p(d. 0) may be a square matrix of side equal to the 
number of grey levels in the image and may not be symmetric. 
Symmetry may be introduced by effectively adding the 
GLCM to its transpose and dividing every element by 2. This 
may render (p(d. 0) and p(d. 0+180°) identical and makes the 
GLCM unable to detect 180° rotations. Thus, homogeneity 
may be given by: 

For any choice of d and 0, a separate GLCM may be 
obtained that may be sensitive to the value of d and 0. The 
GLCM may be implemented with some degree of rotation 
invariance. This may be achieved by combining the results of 
a subset of angles. If the GLCM is calculated with symmetry, 
then only angles up to 180° may need to be considered and the 
four angles (0°, 45°, 90°, 135°) may be effective choices. The 
results may be combined by averaging the GLCM for each 
angle before calculating the features or by averaging the 
features calculated for each GLCM. 
At block 803 of FIG. 8, (which, in one embodiment, may be 

performed in parallel with the activities performed at block 
802, 804, and/or 805), the regularity of the textile texture 
image may be determined. Regularity may be obtained from 
the projection function. Let F(u,v) be the Fourier version of 
original image f(x,y), and let F(p.0) be the wavelet transform 
of the projection of f(x,y) onto a line at an angle 0. Conversion 
in polar form may be performed as follows: 

p-vary) 

here p, 0, u, v represent the location. 
Because the frequency distribution (spectrum magnitude 

as the probability of the corresponding frequency) may pro 
vide a description of texture periodicity, we may calculate the 
central moment as follows: 
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where p may be the mean value of p. C(0) may measure the 
periodicity of texture regularity. The power spectrum may 
provide a measurement of the amplitude of texture regularity, 
and may therefore be used to calculate the regularity of tex 
ture. 

At block 804 of FIG. 8, (which, in one embodiment, may be 
performed in parallel with the activities performed at block 
802, 803, and/or 805), the roughness of the textile texture 
image may be determined. The roughness of the texture can 
be calculated from the root mean square as: 

where u may be the mean value of the height, across all 
in-plane coordinates of image. I may be obtained using: 

i 1 - W 

pl = Z(X, Y) 
MN ( A K 

Note that this method of determining roughness may have 
a limitation in that roughness may be computed indiscrimi 
nately towards the polarity of the height value at a given pixel, 
relative to the mean height value across all the pixels in the 
image. The result may be that the roughness may measure 
nearly the same for two different surfaces, for example, a flat 
Surface with many holes and a flat surface with many peaks. 
To distinguish different kind of surfaces, another parameter 
may be calculated to obtain the roughness oftexture called the 
skewness parameter. Skewness S may be obtained by: 

1 
MNS3 2. q : 

y 
O 

Ssk = 

This formula is similar to the root mean square formula, but 
unlike rms (roughness), skewness S may take on positive 
and negative values as well as Zero (even if the Surface is not 
perfectly smooth), because each term in the double Summa 
tion is raised to an odd power. After calculation of the above 
mentioned features for a textile texture image, the results may 
be interpreted at block 806 of FIG. 8, and the textile texture 
image may be segregated into any one of the above mentioned 
categories at block 807. 

Referring again to FIG. 7, and specifically to blocks 703 
and 711, one or more wavelets may be chosen for a textile 
texture image. One wavelet that may be chosen is a 
Daubechies wavelet, which may be selected from the 
Daubechies wavelet that are a family of orthogonal wavelets 
defining a discrete wavelet transform and characterized by a 
maximal number of Vanishing moments for some given Sup 
port. With each wavelet type in this family of wavelets, there 
may be a scaling function (also called father wavelet) that 
generates an orthogonal multi-resolution analysis. The wave 
let coefficients may be derived by reversing the order of the 
Scaling function coefficients and then reversing the sign of 
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8 
every second scaling function coefficients. These wavelets 
have no explicit expression except for dbl, which is the Haar 
wavelet. 

Another wavelet that may be chosen is a Mexican Hat 
wavelet. A Mexican Hat wavelet may be defined as the second 
derivative of a Gaussian probability distribution function. 
This transform may be used to obtain a good retrieval rate for 
isotropic textures. The scaling coefficients for the Mexican 
Hat wavelet transform may be obtained as follows: 

where the constant c is: 

2 

The wavelet coefficients may be derived by reversing the 
order of the scaling function coefficients and then reversing 
the sign of every second Scaling function coefficients. 

Another wavelet that may be used is a Gabor wavelet. A 
Gabor filter is a linear filter whose impulse responsei may be 
defined by a harmonic function multiplied by a Gaussian 
function. A Gabor wavelet, with width parameter w and fre 
quency parameter V, may be represented as the following 
analyzing wavelet: 

The wavelet is complex valued. Its real part may be: 
u(X)=W-1/2e two cos(2n VX/W) 

and its imaginary part may be: 
q,x)=-1/2e'(x) sin(2at VX/W) 

The width parameter w may play the same role as it does for 
the Mexican hat wavelet. w may control the width of the 
region over which most of the energy of CX) is concentrated. 
The frequency parameter V may provide the Gabor wavelet 
with an extra parameter for analysis. 

Another wavelet that may be used, in one embodiment as 
an alternative to the Gabor wavelet, is the log-Gabor wavelet. 
Natural images may be better coded by filters that have Gaus 
sian transfer functions when viewed on the logarithmic fre 
quency scale. Gabor functions may have Gaussian transfer 
functions only when viewed on the linear frequency scale. On 
the linear frequency scale the log-Gabor function has a trans 
fer function of the form: 

where we may be the filter's center frequency. To obtain 
constant shape ratio filters, the term K/w may also be held 
constant for varying w. Each of the wavelets are described 
herein may be applied for different types of textures, and the 
best wavelet for a particular type of texture may be identified 
based on the retrieval of such a texture from a database as 
described. 

FIG. 2 is a flow chart one of an alternative embodiment of 
a method 200 for determining a texture of an object. The 
method 200 in FIG. 2 may be implemented using, for 
example, the texture identification system 100 discussed 
above. The method 200 may include one or more operations, 
actions, or functions as illustrated by one or more of blocks 
210, 220, 230, 240 and/or 250. Although illustrated as dis 
crete blocks, various blocks may be divided into additional 
blocks, combined into fewer blocks, or eliminated, depending 
on the desired implementation. Processing may begin at 
block 210. 
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At block 210, a texture identification system may receive 
an image of an object whose texture is to be determined. 
Processing may continue from block 210 to block 220. 
At block 220, the texture identification system may calcu 

late various parameters of the image. The parameters are 5 
descriptors of the texture of the object. For example, a direc 
tionality parameter may be calculated to indicate the direction 
of the texture, for example, Vertical, horizontal, diagonal, etc. 
A homogeneity parameter may be calculated to indicate if the 
texture of the object is the same throughout the surface. A 10 
regularity parameter may be calculated to indicate whether 
the texture of the object is regular (that is, to indicate the 
regularity of the texture). A roughness parameter may be 
calculated to indicate whether the texture is rough or smooth 
(that is, to indicate the roughness or Smoothness of the tex- 15 
ture). 

Several techniques may be employed to determine the vari 
ous parameters of the image. For example, a directionality 
parameter of the image may be obtained by generating a 
directional histogram. The directional histogram of the image 20 
may be based on a gray scale value of each pixel in the image. 
The directionality parameter may be determined by calculat 
ing the number of peaks in the histogram. The directionality 
parameter provides an estimate of whether the texture of the 
object is aligned in a specific direction. 25 

Similarly, a homogeneity parameter of the image may be 
obtained by generating a co-occurrence matrix of the image. 
A co-occurrence matrix is a representation of the occurrence 
of each pixel in the image with respect to its Surrounding 
pixels. In one embodiment, a grey level co-occurrence matrix 30 
(GLCM) is constructed from the image by estimating the pair 
wise statistics of pixel intensity. The co-occurrence matrix 
provides an estimate of whether the surface of the object is 
homogeneous. 
A regularity parameter of the image may be obtained by 35 

first representing the image in a frequency domain and then 
analyzing the frequency spectrum of the image. The fre 
quency spectrum is analyzed using mathematical models to 
determine texture periodicity which in turn reflects the regu 
larity of the surface of the object. 40 

Similarly, a roughness parameter of the image may be 
determined by calculating a root mean Scare value for the 
image. The root mean square value is a sum of the variation of 
each pixel value (intensity value) with reference to a mean 
pixel value. The root mean square value provides an estimate 45 
of the roughness of the surface of the object. Note that any of 
these parameters may be calculated as described above, or 
alternate means or methods may be used to determine Such 
parameters. All Such embodiments are contemplated as 
within the scope of the present disclosure. 50 

Processing may continue from block 220 to block 230 
where the Surface may be classified, or segregated, into at 
least one texture type from a set of available texture types. In 
a specific embodiment, the Surface may be classified into a 
single texture type. Examples of available texture types 55 
include homogenous textures, directional textures, regular 
textures and rough textures. The texture type is based on 
several parameters. Further, each texture type includes sev 
eral reference images. Processing may continue from block 
230 to block 240. 60 
At block 240, a frequency spectrum of the image may be 

generated. In one embodiment, to generate a frequency spec 
trum, the image may first be converted into a frequency 
domain using a transform function. In one embodiment, the 
transform function may be selected based on the texture type 65 
of the image. Examples of transform functions include Fou 
rier transforms and wavelet transforms. In one embodiment, a 

10 
3D Fourier transform is used. Examples of wavelet trans 
forms include Daubechies wavelets, Mexican Hat wavelets, 
Gabor wavelets and Log Gabor wavelets, as described herein. 
Any other wavelets may be used, and all Such wavelets are 
contemplated as within the scope of the present disclosure. 
Processing may continue from block 240 to block 250. 
At block 250, the texture of the surface may be determined 

by extracting the spectral signatures from the frequency spec 
trum. A texture value may be computed from the spectral 
signatures. The texture value may be computed by comparing 
the spectral signatures with the reference spectral signatures. 
Each comparison generates a corresponding texture value. 

In one embodiment, the texture may be determined based 
on comparison that generates the minimum texture value. 
The spectral signatures generated are based on a specific 

characteristic of the image. When the image appears to be 
rotated, a spectral signature for a rotation parameter is gen 
erated. Similarly, when the image is scaled, spectral signa 
tures for a scaling parameter and a translation parameter are 
generated. The manner in which a spectral signature for a 
rotation parameter is computed is described in further detail 
below. 

FIG. 3 is a flow chart of an illustrative embodiment of a 
method 300 for determining a texture of the object from 
frequency spectrums. As one part of this method, as men 
tioned above, the texture may initially be projected into a 3D 
Cartesian co-ordinate system. The method 300 in FIG.3 may 
be implemented using, for example, the texture identification 
systems and methods discussed above. The method 300 may 
include one or more operations, actions, or functions as illus 
trated by one or more of blocks 310,320,330,340 and/or 350. 
Although illustrated as discrete blocks, various blocks may be 
divided into additional blocks, combined into fewer blocks, 
or eliminated, depending on the desired implementation. Pro 
cessing may begin at block 310. 
At block 310, a two-dimensional image representative of a 

surface of an object is received. In one embodiment, the 
image is rotated. Processing may continue from block 310 to 
block 320. 
At block 320, a three-dimensional (3D) projection of the 

image is estimated. In one embodiment, the projection is 
estimated using an intensity value, a tilt angle and an orien 
tation angle. 

In one embodiment, the 3D projection is obtained by pro 
jecting the two dimensional image onto a Cartesian coordi 
nate system. For example, consider an image represented 
generally as I(x, y) with a total number of M pixels, a tilt 
angle represented by a and an orientation angle B. When 
the image is projected on to a Cartesian plane of f(x, y, z), it 
may be represented as: 

x=M sin B cos C. Equation (1) 

y=M sin B sin C. Equation (2) 

z=M cos B Equation (3) 

Processing may continue from block 320 to block 330 
where the 3D projection is transformed into a frequency 
domain. In one embodiment, a 3D Fourier transform is used 
for the transformation. Thus for the image projection f(x, y, z) 
in the Cartesian co-ordinate system, the three dimensional 
Fourier transform F(u,v,w) is represented by: 

In one embodiment, f(x, y, z) may be the rotated version 
of f(x, y, z). In Such an embodiment, the relationship of these 
two images may be formulated as follows: 
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f(x, y, z) = f(x, y, z) 

W. R11 R12 R13 x 
y = R2 R22 R23 y 
r R3 R32 R333, 

where R is the orthogonal matrix. When the original texture is 
rotated by an angle, the frequency spectrum may also be 
rotated by the same, demonstrating the rotation property of 
the Fourier transform. 

Processing may continue from block 330 to block 340 
where the 3D projection in the frequency domain is projected 
on to a spherical co-ordinate system. In general, the spherical 
coordinates of a point P are defined by p, 0 and I. In 
general, p represents the radius or radial distance from the 
origin 'O' to point P, the inclination (or polar angle), 0 is 
the angle between the Zenith direction and the line segment 
connecting origin 'O' to point P and I represents the 
azimuth angle measured from the azimuth reference direction 
to the orthogonal projection of the line segment OP on a 
reference plane. 

Thus, F(u,v,w) may be projected on to a spherical coordi 
nate system at angles 0 and I. The Fourier transform of 
such a projection may be F(p,0,1), where: 

p-vary-w) Equation (5) 

U=tan (v/u) Equation (6) 

0=cos' (worthw) Equation (7) 

and F(p,0,...) may be the Fourier transform of f(x, y, z, 
projected onto a plane at angles 0, and I. The relationship 
between the rotated and unrotated image in spherical form 
may be represented as F(p,0,1)=F(p,0,1). 

Processing may continue from block 340 to block 350 
where the texture of the surface is determined. In one imple 
mentation, the texture of the surface may be determined by 
analyzing spectral signatures extracted from the 3D projec 
tion on the spherical co-ordinate system. The frequency spec 
trums are generated for the tilt angle variation, the orientation 
angle variation, and the spectral signatures may be extracted. 
Since the frequency distribution (spectrum magnitude as the 
probability of the corresponding frequency) may provide a 
description of texture periodicity, the central moment of 
F.(p,0,1) and F(p,0,1) may be calculated both for 0 and I 
using the following equations: 

C.(0) = X(p, - p.)F(p. 9, d.) Equation (8) 

C(0) = X (O - O)F(p, 6, d) Equation (9) 
g 

C, (b) = X(p, -f,)F(p, 9, d.) Equation (10) 

C(OD) = X (p-p)F(p. 8, d) Equation (11) 
g 

where p, and p, may be the mean values of p and p, 
Equations 8-11 may be used to measure of a periodicity of the 
texture using C(0), C(0), C(t), and C.(I). 
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The power spectrum may provide a measurement of the 

amplitude of texture regularity. Thus, it may be used to com 
pute the spectral signatures at angles 0 and 0, 0+A 0 as 
follows: 

T(0) = C,(0.) F.(p. 9, d.) Equation (12) 

T(0) = C(0X F(p. 8, d) Equation (13) 
g 

T.(d) = C, (d.) F.(p. 9, d.) Equation (14) 

T(b) = C(d)X F(p. 8, d) Equation (15) 
g 

such that the orientation spectral Signatures T(0), T(0),T(1) 
and T(1) are obtained. The texture signature may be rotation 
dependent and it may be a periodic function of 0 and I with 
a period of 2II. 

If T(0) and T(1) are computed from f(x,y, z) and T(0) and 
T.(I) are computed from f(x, y, z) rotated by A0 and AI 
from f(x, y, z), T(0) may be equal to T(0) if 0.0+A0. Simi 
larly T(1) may be equal to T.(I) II+A1. Thus a rotation 
of the input image f(x, y, z) by A0 and AI may be equivalent 
to a translation of its spectral signatures by the same amount 
along the orientations. Since the Fourier magnitude is invari 
ant to translation, the Fourier expansion of T(0) and T(1) may 
provide a set of rotation invariant features for the input image 
I(x, y). 

FIG. 4 shows an example graph 400 depicting a frequency 
spectrum representative of a tilt angle variation. The graph 
400 shows the distribution of the tilt angle variation for an 
example two-dimensional image. The X-axis represents a tilt 
angle '0' and the y-axis represents T(0). As discussed above, 
T(0) is a representative of a tilt angle variation. In one 
embodiment, T(0) is obtained using equation (13). 

FIG. 5 shows an example graph. 500 depicting a frequency 
spectrum representative of an orientation angle variation. 
Graph. 500 shows the distribution of the orientation angle 
variation for the example two-dimensional image whose fre 
quency spectrum representative of the tilt angle variation is 
shown in FIG. 4. The X-axis represents an orientation angle 
cp and the y-axis represents T(cp). As discussed above, T(cp) is 
a representative of an orientation angle variation. In one 
embodiment, T(cp) is obtained using equation (15). 

In order to determine the texture of the surface, both spec 
tral signatures are compared with corresponding reference 
spectral signatures of the reference images stored in the 
memory. The reference spectral signatures can be generated 
using one or more of equations (1) to (15) as described in FIG. 
3. 

In one embodiment, the spectral signature for the tilt angle 
variation is compared with several reference spectral signa 
tures for tilt angle variation. Similarly, the spectral signature 
for the orientation angle variation is compared with several 
reference spectral signatures for orientation angle variation. 

In one embodiment, a tilt angle value is calculated based on 
a Sum of peak to peak distance between the spectral signature 
for the tilt angle variation and the reference spectral signature 
for the tilt angle variation. Thus, a tilt angle value is generated 
for each comparison. 

Similarly, an orientation angle value is calculated based on 
a Sum of peak to peak distance between the spectral signature 
for the orientation angle variation and the reference spectral 
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signature for the orientation angle variation. Thus, a slant 
angle value is calculated for each comparison. 
A texture value based on the tilt angle value and the orien 

tation angle value is then generated for each comparison. In 
one embodiment, the texture value is he sum of the tilt angle 
value and the orientation angle value. The texture of the object 
is determined based on the reference spectral signatures that 
produce the minimum texture value. 

Referring again to FIG. 7, and specifically to blocks 704 
and 712, affine invariant texture signatures may be extracted 
from the textile texture images according to the disclosed 
embodiments. A textile texture image. Such as a query textile 
texture image, may be a scaled, translated, and rotated (image 
and Surface) version of the a textile texture image found, for 
example, in a catalogue. To generate the system invariant to 
this kind of affine distortions, in one embodiment the plat 
form may be changed to the wavelet domain. A two-dimen 
sional (2D) wavelet may contribute information for a simple 
image rotation, Scale, and translation, but to incorporate the 
Surface rotation (tilt (theta) and orientation (phi) changes), a 
three-dimensional (3D) wavelet transform may be utilized. 

FIG. 10 illustrates non-limiting example method 1000 for 
converting a wavelet transformed image to a spherical coor 
dinate system so that the variations of tilt and orientation 
changes may be captured. At block 1001 a textile texture 
image may be provided or received. A 3D wavelet transform 
may be used to generate a power spectrum a block 1002. 
Projection may then be used to generate a scalogram at block 
1003. Next, a Fourier transform may be used to determine 
affine invariant features at block 1004. 

In an embodiment, W(p,0.(p) may be the wavelet transform 
of the projection of f(x, y, z) onto a plane at angles 0 and (p. 
where: 

d = tan(y | u) 

* 8 =tant 

and W(x, y, z) may be the projection of f(x, y, z) onto 
a plane at angles 0, and (p. The relationship between the 
original and affine distorted image in polar form may be 
represented as: 

Since the frequency distribution (spectrum magnitude as the 
probability of the corresponding frequency) may provide a 
description of texture periodicity, the central moment may be 
calculated as follows: 

where p and p are the mean value of p and p. C(0) may 
measure the periodicity of texture regularity, and C(0), C(cp) 
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14 
and C () may be similarly calculated. Note that the power 
spectrum may provide a measurement of the amplitude of 
texture regularity. Thus, the power spectrum may be taken 
into account to compute the signatures at angle 0 and 0-0+ 
A0 as follows: 

T.(0) = C, (9). W.(p. 9, d.) 
fa 

T(0) = C(0X W(p. 8, d) 
g 

T.(d) = C, (d).W. (p. 9, d.) 
fa 

T(0) = C(d), W(p. 9, d) 
g 

such that the orientation spectrum signatures T(0), T(0), 
T(1) and T(1) may be obtained. 
The texture signature may be affine dependent and may be 

a periodic function of 0 and cp with a period of 2II. If T(0) and 
T(1) are computed from f(x, y, z) and T(0) and T(1) are 
computed from f(x, y, z) affine distorted by A0 and Aqp 
from f(x, y, z), T(0)=T(0) if 0-0+A0. Similarly results may 
be seen for T(1). Thus, a rotation of the input image f(x, y, z) 
by A0 and Ap may be equivalent to a translation of its scalo 
gram by the same amount along the orientations. The trans 
lation between the two plots may be evident; however the 
plots may share almost the same Fourier magnitude response. 
Since the Fourier magnitude is invariant to translation, the 
Fourier expansion of T(0) and T(1) may provide a set of 
affine invariant features for the input image I(x, y). Note that 
the above described techniques can be implemented in a 
computing device as is described below. 
To demonstrate the effect of the embodiments described 

herein, example, non-limiting results of the various imple 
mentations of such embodiments will now be described. FIG. 
11 illustrates examples of images that may be contained in a 
textile texture database. The images illustrated in FIG. 11 are 
merely examples and are not intended to limit the scope of the 
present disclosure in any way. In this example, images are 
captured and stored individually while surfaces are rotated 
and illuminated in varied conditions. The database as shown 
in FIG. 11 consists of four synthetic textures and thirty real 
textures. In terms of a rotation invariant texture classification 
scheme, this example texture database provides a set of Sur 
face rotations and image rotations along with the registered 
photometric stereo image data. Each texture sample has 40 
samples under varying image rotations and Surface rotations. 
Rotations are carried out by an increment of 30° and 45°. Also 
the database may contain scaled and translated version of the 
original texture. 

Directionality may be a significant texture feature that is 
well perceived by the human visual system. The geometric 
property of the directional histogram may be used to calculate 
the directionality of the image, as shown in FIG. 12, where a 
directional histogram is illustrated for image “An2 shown in 
FIG. 11. The directionality of the textile texture “An2 as 
shown in FIG. 12 is 46%. “An2 is an isotropic texture. 



US 8,699,785 B2 
15 

FIG. 13 illustrates a directional histogram for image"Im2 
of FIG. 11. The directionality of this texture is 98%. The hill 
in the directional histogram may be referred to the set of bins 
from the previous valley to the next valley. The number of 
hills for the texture image 'An2 seen in FIG. 12 is four, as can 
be seen in its directional histogram, whereas the texture 
image "Im2 has a single hill in its corresponding histogram 
as seen in FIG. 13. Thus it may be inferred that lesser the 
number of hills, the higher the directionality. 

FIG. 14 illustrates a spectral signature plot that shows the 
results of using a Fourier transform of a scalogram signature 
by varying theta using a log Gabor wavelet. Chart 1401 illus 
trates the Fourier expansion of the spectrum signature of the 
original image as compared to angle theta, while chart 1402 
illustrates the Fourier expansion of the spectrum signature of 
the affine distorted image as compared to angle theta. 

FIG. 15 illustrates a spectral signature plot that shows the 
results of using a Fourier transform of a scalogram signature 
by varying phi using a log Gabor wavelet. Chart 1501 illus 
trates the Fourier expansion of the spectrum signature of the 
original image as compared to angle phi, while chart 1502 
illustrates the Fourier expansion of the spectrum signature of 
the affine distorted image as compared to angle phi. 

FIG. 16 illustrates a spectral signature plot that shows the 
results of using a Fourier transform of a scalogram signature 
by varying theta using a Daubechies wavelet. Chart 1601 
illustrates the Fourier expansion of the spectrum signature of 
the original image as compared to angle theta, while chart 
1602 illustrates the Fourier expansion of the spectrum signa 
ture of the affine distorted image as compared to angle theta. 

FIG. 17 a spectral signature plot that shows illustrates the 
results of using a Fourier transform of a scalogram signature 
by varying phi using a Daubechies wavelet. Chart 1701 illus 
trates the Fourier expansion of the spectrum signature of the 
original image as compared to angle phi, while chart 1702 
illustrates the Fourier expansion of the spectrum signature of 
the affine distorted image as compared to angle phi. 

From these results, it can be inferred that the Fourier expan 
sion of a scalogram of an original and an affine distorted 

Measure 

Precision 
Recall 
Error rate 
Retrieval 
Efficiency 
Computational 
Time 

image remains similar, since the shift in peak is compensated 
by Fourier transform based on its affine invariant property. 
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Based on the results obtained, it can further be inferred that 60 
log Gabor wavelets may provide a better retrieval result for 
directional type query image than other wavelet transforms. 
The values of all the performance evaluation measures for 20, 
40, 60, 80 and 100 retrievals using a 3D log Gabor wavelet 
transform for directional texture are illustrated below in 
Table 1. 
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TABLE 1 

Performance using 3D Log Gabor wavelet for 
Directional textile Texture 

Retrievals 

2O 40 60 8O 100 

Precision 1 1 O.982 0.977 O.962 
Recall O.222 0.444 0.677 1 1 
Error rate O O O.O18 O.O23 O.O38 
Retrieval Efficiency 100 1OO 98.2 97.7 96.2 

A Mexican hat wavelet may provide good retrieval results 
for Homogeneous type query image compared to other wave 
let transforms. The values of all the performance evaluation 
measures for 20, 40, 60,80 and 100 retrievals using a Mexican 
hat wavelet transform for directional texture are illustrated 
below in Table 2. 

TABLE 2 

Performance using 3DMexican hat wavelet for 
Honogeneous textile Texture 

Retrievals 

2O 40 60 8O 100 

Precision 1 1 O.9S O.9 O.9 
Recall O.222 0.444 O.633 1 1 
Error rate O O O.OS O.1 O.1 
Retrieval Efficiency 100 1OO 95 90 90 

In Table 3, the results of a performance evaluation of vari 
ous wavelet transforms are tabulated. It may be inferred from 
these results that the Mexican hat wavelet provides good 
retrieval efficiency for homogeneous textures. Similarly, log 
Gabor wavelets may provide good retrieval efficiency for 
directional and regular texture, while Daubechies and Gabor 
wavelets may work well for directional textures. Therefore, in 
some embodiments, the type of wavelet chosen may be based 
on the type of texture of the query image. 

TABLE 3 

Performance evaluation of various Wavelet transforms 

Method 

Mexican Hat Log Gabor Log Gabor 
Daubecheis (Homogeneous) Gabor (regular) (directional) 

O.962 O.95 0.955 O.923 O.962 
O.62 O.6598 O.622 1 O.61 
0.375 O.OS O.O45 0.077 O.O38 

96.2 95 95.5 92.3 96.2 

17 S 17 S 17 S 17 S 15S 

FIG. 6 is a block diagram illustrating an example comput 
ing device 600 that may bearranged for determining a texture 
of an object in accordance with the present disclosure. In a 
very basic configuration 602, computing device 600 typically 
includes one or more processors and a system memory 606. A 
memory bus 608 may be used for communicating between 
processor 604 and system memory 606. 

Depending on the desired configuration, processor 604 
may be of any type including but not limited to a micropro 
cessor (uP), a microcontroller (LLC), a digital signal processor 














